
Towards the Integration of Security Aspects
into System Development

using Collaboration-Oriented Models

Linda Ariani Gunawan, Peter Herrmann, and Frank Alexander Kraemer

Department of Telematics
Norwegian University of Science and Technology (NTNU)

Trondheim, Norway
{gunawan,herrmann,kraemer}@item.ntnu.no

Abstract. Security is an important feature of system design which should
be taken into account early in the development of systems. We propose
an extension of the SPACE engineering method in order to integrate
security aspects into the system design and implementation. The inte-
gration of security mechanisms is facilitated by collaboration-oriented
models of the functional system specification (i.e., by describing func-
tionalities reaching over different physical components in one model).
Countermeasures are also modeled by collaborations since security mech-
anisms are often collaborative structures themselves. Our approach in-
cludes an asset-oriented security analysis on the collaboration-oriented
models in order to determine the level of protection needed. We illustrate
our approach by the example of an e-sale system.

1 Introduction

Developing security-aware distributed systems is a non-trivial task: Not only we
must guarantee the correct execution of a system provided by cooperating dis-
tributed entities with respect to the desired functionalities of the application.
We also have to take into account the protection of the system against secu-
rity attacks by malicious entities. The consideration of these security aspects
should be integrated as early as possible into the development process, since
adding security later in an ad-hoc manner increases the probability to overlook
vulnerabilities contained in the system implementation [1]. For that reason, we
propose a model-driven, security-aware development method based on collabo-
rative, reusable building blocks. Application logic as well as security mechanisms
are expressed by means of functionally complete UML models that can be ana-
lyzed in separation. Once consistent and adequately protected, these models can
be stored as building blocks in a library. This not only reduces the development
time, since proven solutions can be reused, but also facilitates the cooperation be-
tween application developers and security experts, since both parties contribute
their knowledge in the form of self-contained, encapsulated units that are easy
to combine, as shown in [2] for the domain of trusted systems.



Our proposed method is an extension of the engineering method SPACE [3–5]
that supports the design and implementation of reactive systems in general. In
this method, system specifications are expressed in the form of UML 2.x activi-
ties, enabling the composition of systems by reusable building blocks. By means
of model transformation and code generation, the composed system specifica-
tions can be implemented automatically, so that engineers only have to work on
the level of UML activities. We extend the SPACE method by performing a se-
ries of iterated steps of security analysis which adheres to the standard ISO/IEC
Common Criteria [6]. During the analysis, security threats, attacks and risks are
considered in order to design suitable protection mechanisms and integrate them
into the functional specification of the system.

To be effective, most security mechanisms require the correct and coordi-
nated collaboration of several entities. For instance, an asynchronous encryption
mechanism consists at least of a transmitter encrypting a message with the pub-
lic key of the receiver and the receiver itself, that decrypts the message with the
corresponding private key. Furthermore, entities like a certification authority is-
suing certificates that a public key really belongs to a certain party are part of
the security mechanism as well. For that reason, we also use collaboration models
to specify countermeasures. The different stakeholders of security mechanisms
and their corresponding behaviors may be expressed by UML activities which
can easily be combined with other collaboration models describing the systems
to be protected.

2 The Basic Development Method

The structure of the e-sale system is modeled using collaboration diagram, as
shown in Fig. 1. It consists of two collaboration roles, customer and merchant,
which denote the participants of the system. To make a purchase, these roles have
to collaborate with each other, i.e., execute some joint behavior. This behavior
is captured by the two collaboration uses o:Order and p:Payment, denoted by
ellipses. The dashed lines are the role bindings specifying that the customer is
the buyer during the order, and the payer during the payment. Vice versa, the
merchant acts as a seller and a payee, respectively.

o:Order

p:Payment

buyer seller

payer payee
customer merchant

«system» e-Sale

Fig. 1. UML collaboration for the e-Sale system

While the collaboration in Fig. 1 specifies from which services the complete
system is composed, the detailed dependencies between order and payment are



«system» e-Sale
customer merchant

display invoice 
and confirm

p: Payment

invoice: Invoice start: Invoice

sucess confirm success

sCart: List

o: Order
start

finish: Order

products: List

buy: List

select products
: List

get sCart
: List

create invoice

pay failed

confirm failed

: Invoice

start/

started

«esm» Order

selecting

ordering
/finish

start/

started

«esm» Payment

/failed/success

billed
pay/

validating

/invoice+pay

: Order

: Invoice /invoice

display "failed"

display "success"

/products

buy/
/products+buy

Fig. 2. The behavior of the e-Sale system

not visible. For this purpose, we use the UML activity diagram shown in Fig. 2.
Each participant in the system is represented by its own activity partition.The
order and payment services from Fig. 1 are represented by the call behavior
actions o:Order and p:Payment, referring to activity diagrams that define their
detailed internal behavior, as we will see later.

In contrast to the collaboration uses from Fig. 1, call behavior actions have
pins at their borders which denote specific events that we can use for their
composition. In order to understand the high-level interface behavior of the call
behavior actions without looking into their internals, they are accompanied by
special, external state machines (ESMs), shown to the right in Fig. 2. They
define the externally observable behavior at the pins of a call behavior action.

The e-sale system starts at the initial node in the customer side by triggering
o:Order via its start pin. From the ESM for the order collaboration shown at
the upper right in Fig. 2, we see that after a start, we have to be prepared for
the arrival of the catalogue of products. The ESM allows that the response to
the catalogue in the form of a buy list either happens with a delay (for example
after the customer selecting via a user interface) or immediately. In the former
case, the ESM declares the transition /products, leading into state selecting, from
which transition buy/ leads into state ordering.

For the system as specified in Fig. 2, we assume that the order is not delayed,
but directly computed by the operations select products and get sCart. Since
these operations are executed locally, they are processed within the same run-to-
completion step. This immediate return via buy is allowed by the ESM with the
transition /products+buy. Note that products and buy are streaming parameter



pins denoted in black, meaning that they can pass tokens while the collaboration
is active.

The o:Order collaboration will eventually finish on the merchant’s side via
finish. This triggers the local operation create Invoice, which in turn triggers the
start of the payment collaboration. From the ESM for the payment collabora-
tion shown at the bottom right in Fig. 2, we see that this collaboration passes
the invoice to the customer, who confirms the payment via pay. Since payment
information may be invalid, this collaboration may terminate in two different
ways, either via success or failed, upon which corresponding actions are invoked
on the merchant and customer sides.

3 The Security-Enhanced Method

The creation of secure systems needs the combined effort of domain experts
having in-depth knowledge of the application domain of a system and of secu-
rity experts [7]. A straightforward way is that the domain-expert first develops
a functionally correct, yet unprotected system. Thereafter, the security expert
analyzes the system for vulnerabilities, threats and risks, and adds countermea-
sures hardening it against malicious attacks. This kind of security analysis is
well-known since in the seventies [8]. More recently, model-based techniques for
secure system development were introduced as well [9–14]. We also propose a
technique based on UML [7, 15, 16]. It follows the security analysis standard
ISO/IEC Common Criteria [6].

The UML-orientation of the approach makes it easy to be integrated into the
SPACE engineering methodology leading to the proceeding depicted in Fig. 3.
There the domain expert is expressed by the simple person icon while the security
expert is expressed by a person icon carrying a lock.

Security-aware
system specification

Security Library
Functional

Design & Analysis

Model
Transformation

Code 
Generation

Domain specific 
libraries

System 
specification

risk is bearable

Asset 
Valuation

 Weakness &Threat 
Identification

Countermeasure 
Design & Integration

risk is NOT bearable

Risk
Assessment

4

Executable 
Code

1

2

3

Security Analysis

Fig. 3. Security-enhanced development method

First, the domain expert creates a functional system model by composing
and analyzing a set of UML collaborations, activities and ESMs, as presented
in Sect. 2. Then, when the system is functionally correct, it is handed over to
the security expert who enhances the system by performing a security analysis
which consists of the following series of steps:



Step 1. Valuation of assets and definition of security objectives.
Step 2. Identification of weaknesses and threats.
Step 3. Assessment of the resulting risks.
Step 4. Planning, design and evaluation of suitable countermeasures.

Step 4 results in an extended system specification which of course may con-
tain new vulnerabilities. Therefore, the analysis has to be reiterated with the
extended system model at step 2 which may lead to further countermeasures
protecting the original ones. The iteration is stopped in step 3 when all risks for
the system are accepted as bearable.

The accomplishment of the steps 2 and 3 can be supported by various tools
based on graph transformation [15, 16] as well as model checkers such as Scyther
[17] and Casper/FDR [18].The use of these tools, however, is not within the
focus of this paper.

The integration of countermeasures in step 4 is supported by a library of
basic security primitives which facilitates the development of suitable counter-
measures. Moreover, the collaboration models of security mechanisms realizing
often used countermeasures can also be stored in a library.1 Thus, the security
expert adds a countermeasure by utilizing the corresponding blocks of the li-
brary and composing them with the blocks modeling the system functionality.
Sometimes the integration of a security mechanism changes the functionality of
the system (see [7]). In that case, the domain expert has to check if the changes
can be accepted and the functional analysis has to be repeated for the extended
system.

When the security expert decides that the risks of the resulting system
are bearable, the system specification is transformed into a component-oriented
model from which executable code is generated. Of course, these two transfor-
mation steps have to guarantee that no further vulnerabilities are added which,
however, is not discussed here.

4 Security Analysis of the e-Sale System

The e-sale system will be implemented as two distributed components. The com-
ponent for the merchant is run on a server, while the customer component can be
deployed on a mobile device or a computer. Therefore, there are three parts that
make up the e-sale system: the merchant application, the customer application
and a communication channel between them, which we assume to be public.

In the following, we focus on confidentiality and integrity issues in communi-
cation security. We assume that sufficiently strong access control (LDAP, X.509)
is enforced in the devices running the system components such that direct at-
tacks on the hosts are unlikely. Concerning availability, we assume an IDS is in
place protecting the system against denial-of-service attacks.

1 Examples of building blocks for basic security primitives and security mechanisms
are introduced in Sect. 5



In step 1 of the security analysis, the security expert identifies that infor-
mation exchanged between the components is an important asset. In the UML
activity, a message transmission is represented as activity flow crossing a par-
tition border. These flows are hidden in the Order and Payment services such
that the expert has to examine their details in addition to the system in Fig. 2.
From the UML activity for the Order service, depicted in Fig. 4, three types
of information can be distinguished: a simple call message for the catalogue of
products, the catalogue itself and the order data including information about
the items to be purchased and the delivery address. In the Payment service
(not shown in detail here), there are two types of messages: invoice data and
payment information which includes the credit card number, card holder name,
expire date and card security code.

Order

start
products:

List

get catalogue
: List

buyer seller

buy:
List

create order
: Order finish:

Order

: List

Fig. 4. UML activity for the Order service

In order to estimate the value of an asset, we attach properties related to the
basic security objectives confidentiality and integrity to the asset. The magnitude
of these properties describes the financial value of the asset and in correspon-
dence the degree of protection needed. Since it is often difficult to estimate the
true financial value of an asset, we use instead seven security levels which cor-
respond to the evaluation assurance levels defined in the Common Criteria [6].
Level 1 should be assigned to the confidentiality property of information if the
damage caused by revealing the information is only minor, while level 7 should
be used if by eavesdropping leads to highly serious consequences particularly for
the owner of the information.

The security expert assigns level 1 to the confidentiality property of the
catalogue of products in the e-sale example since it is intended to be publicly
available so that everybody can read it easily. The same level also applies for
the integrity property. In contrast, the order information has level 5 both for its
confidentiality and integrity properties since revealing it to other entities leads
to privacy issues and modifying the information also causes serious consequences
for both the customer and the merchant. The same holds for the invoice infor-
mation, while the payment information is rated with level 7 due to the severe
consequences of eavesdropping the credit card information.



In step 2 of the security analysis, weaknesses and threats of the system are
identified by considering possible attacks. Since the communication channel is
public, malicious entities can eavesdrop, alter and replay messages in the channel.
All information exchanged is vulnerable since no protection has been applied yet.
Thus, those attacks are all substantial threats.

Based on the valuation of an asset and the seriousness of an attack on it,
risk is calculated in step 3 of the security analysis. The matrix2 in Tab. 1 [7,
15] is used to calculate the risk level. It reflects that risks in general depend
on both the value of an asset and on the seriousness of the vulnerabilities and
threats [19]. For example, since the confidentiality and integrity value of the
catalogue of products is 1 and the threat seriousness level is 7, the risk level
of this information is 3. For the order information, the result is 6 both for the
confidentiality and integrity risks. Using a policy in which level 3 is considered
bearable, this risk assessment shows that the risk of transmitting the catalogue
can be accepted. However, the risks for the other three assets are too high.
Therefore, we proceed to step 4 in which the security expert designs suitable
countermeasures to mitigate the threats and integrates them into the system.

Table 1. Matrix for calculating risk values

Security Threat seriousness level
level 1 2 3 4 5 6 7

1 0 0 1 1 2 3 3

2 0 1 1 2 3 3 4

3 1 1 2 3 3 4 5

4 1 2 3 3 4 5 5

5 2 3 3 4 5 5 6

6 3 3 4 5 5 6 7

7 3 4 5 5 6 7 7

5 Security Specific Building Blocks

Cryptographic techniques are typically used to protect messages in transit. To
achieve confidentiality, one can employ encryption. A digital signature can be
used to detect message modifications. Finally, adding a nonce to a message
thwarts replay attacks. One can use a combination of these three basic cryp-
tographic primitives to protect the order, invoice and payment messages in the
e-sale system. Thus, instead of sending a message msg in clear, the message is
encoded in the form: {n|msg|{hash(n|msg)}KRs}KUr , where | represents con-
catenation of data, n is a nonce or a random value, hash() is a one-way hash
function, {}KRs

represents an encryption with the private key of the sender and

2 A risk level 0 means that no risk is assumed



{}KUr
is an encryption with the public key of the receiver. The rest of this

section will show how this solution is represented by SPACE building blocks.
Some basic security primitives consist of some security operations that must

be executed by a sender and a receiver to fulfill one or more security objectives.
For example, to achieve message integrity, one can use a digital signature that
consists of two operations: one for signing the message and the other for verifying
the signature. These two operations are performed by the sender and the receiver
respectively. We encapsulate this pair of operations in a single building block and
put it in a library of basic security primitives in order to help the security expert
to create more complex security mechanisms.

n: Handle Nonce

plainIn

noncedOut
noncedIn

nonceError
plainOut

e: Public Key Encryption
plainIn
chiperOut cipherIn

plainOut

d: Digital Signature
plainIn

sigOut
sigIn

sigError

plainOut

Secure Message Transfer

msgIn:
byte[]

security
Attack

msgOut:
byte[]

sender receiver

Digital Signature

sigIn:
byte[]

plainIn
:byte[]

sigOut:
byte[]

sign
: byte[]

: byte[]

sender

verify
: byte[]

: boolean

sigError

msg: byte[]
receiver

[false]

plainOut:
byte[]

get msg
: byte[]

[true]

Fig. 5. Building Block for Digital Signature and Secure Message Transfer

The building block for the security primitive digital signature is shown on the
left part in Fig. 5. This block starts by receiving a token containing a message
m to be signed via pin plainIn. Then, a call to an operation sign implementing
the signing function is performed and a token is emitted via pin sigOut with
a data in the form of m|{hash(m)}KRs

. Sometimes later, the receiver receives
the signed data via pin sigIn and verifies the signature {hash(m)}KRs in the
operation verify. Further, it stores the original message m in the variable msg
and outputs a Boolean value indicating whether the integrity of the message is
preserved or not. According to the result, either the original message is given out
via pin plainOut or a token is emitted via pin sigError. Note that the Digital
Signature block does not itself specify any direct communication between its
participants, but rather encapsulates corresponding operations.

The operations sign and verify in the Digital Signature block contain Java
code for a digital signature implementation with a particular algorithm. We
utilize a set of APIs from Java Cryptography Architecture (JCA) [20] and Java



Cryptography Extension (JCE) [21] for the implementation of cryptographic
algorithms and other related materials such as encryption keys and public key
certificates. It is of course possible to adapt the building block to use other secure
implementations of cryptographic algorithms or keys.

Building blocks for Public Key Encryption and Handle Nonce are also cre-
ated. They are not shown here in detail, since those blocks are similar to the
Digital Signature. The security expert then composes instances of these three
blocks in order to create the block of security mechanism Secure Message Trans-
fer, depicted on the right part in Fig. 5. A message transferred from the sender
to the receiver in this block is protected in a way that the transmitted message
is unintelligible for entities apart from the sender and the receiver as long as the
private key of the receiver is not compromised. This block also guarantees that
every message emitted via pin msgOut is always identical to the corresponding
message received via msgIn as long as the private key of the sender is not jeopar-
dized. Furthermore, if a malicious entity attempts to replay a message or make
a modification on it, the receiver gets a notification via pin security Attack.

Since this security mechanism can be used to secure other systems as well, this
block is put in the library of security building blocks for further use. Moreover,
the security expert may also use this block to create more complex and specific
security mechanisms.

6 Secure e-Sale System

The secure message transfer mechanism is used to protect the exchanged mes-
sages containing the order, invoice and payment information in the e-sale system.
Therefore, instances of the Secure Message Transfer block are composed with
the Order and Payment services in order to produce a security-aware system
specification. The Secure Order service, depicted on the upper right in Fig. 6, is
the result of composing the security block with the Order service.Similarly, the
Payment service is also extended, resulting in the Secure Payment service.

Note that the Secure Message Transfer block indicates a security breach by
emitting a token via pin securityAttack instead of giving out the transferred
message. This has to be taken care of to keep the Secure Order and Secure
Payment services consistent. For the Secure Order service, an alternative output
pin securityAttack is added.

These change alters the functional behavior of the e-sale system. The op-
eration handle attack, which contains logging the attacks for further analysis,
and the operation confirm failed, in which a notification of transaction failure is
sent to the customer, are executed respectively in the event of a security breach
as shown on the left part in Fig. 6. These enhancements are examined by the
domain expert and functional analysis is performed once more to ensure that
the secure e-sale system is functionally correct.

Another round of the security analysis needs to be performed. A reiterated
step 2 of the security analysis on the secure e-sale system shows that the same
threats are still applicable. The malicious entities may still harm the system by



«system» Secure e-Sale
customer merchant

display invoice 
and confirm

sp: Secure Payment
invoice: Invoice start: Invoice

sucess

sCart: List

so: Secure Order
start

finish: Order

products: List

buy: List

select products
: List

get sCart
: List

create invoice

pay

failed

confirm failed

securityAttack

securityAttack

handle attack

: Order

: Invoice

: Invoice

confirm successdisplay "success"

display "failed"

Secure Order

start
products:

List

get catalogue
: List

buyer seller

buy:
List

create order
: Order

finish:
Order

t: Secure Message Transfer

msgIn

securityAttack

msgOut

security
Attack

: List

Fig. 6. The secure e-Sale system

eavesdropping, modifying and replaying messages transferred in the communi-
cation channel. However, since the security expert employs the secure message
transfer to protect the order, invoice and payment information, the threat level
is reduced to 1. In consequence, the risk level of those information is now 3 or less
and thus bearable. Up to this point, both the domain and security experts are
convinced that the secure e-sale system is functionally correct and adequately
protected with respect to the risk assessment.3

As described previously, the subsequent implementation of the secure e-sale
system is performed in two automated steps. First, it is transformed into a
component-oriented model, expressed in executable state machines. Afterwards,
a platform dependent executable code is generated from the state machines
(see [3]). Then, the code including some security settings (e.g., digital certificates)
can be deployed.

Collaboration-oriented modeling in our approach facilitates the reuse of se-
curity solutions. From our development method, we can classify a security-aware
system model into building blocks for security primitives and mechanisms ob-
tained from the security library and thus intended to be reused, application-
related blocks and some adaptations needed as the result of security analysis.
In order to estimate the degree of reuse related to security aspects we compute

3 The unprotected transmission of the success respective failed information is also a
vulnerability since an intruder can alter it. We do not discuss that here for brevity.



the ratio of the first category to the combination of the last two. Since our de-
velopment activities consists of creating UML models and writing Java code in
the call operation actions as well as other related code (e.g., class Order in the
Secure Order block), we can estimate the reuse rate in terms of these two factors.

For our secure e-sale system, we use three instances of the security-specific
block Secure Message Transfer. This block contains the Digital Signature, the
Public Key Encryption and the Handling Nonce blocks. The building blocks
in the e-Sale system depicted in Fig. 2 are the application-related blocks, while
some call operation actions, such as handle attack, and pins (e.g., security Attack)
constitute the adaptations. By calculating the number of UML elements and the
number of lines of Java code in the system, we find that 68% of the elements
and 32% of the code are reusable security solutions.

Naturally, the degree of reuse depends on many factors. The complexity of
security mechanisms is one of them. Moreover, different applications will also
result in different reuse proportions. Overall, the reuse of security aspects and
also the reuse proportion from functional models (see [5]) contribute to reducing
the time and effort in developing security-aware systems.

7 Related Work

Although many experts agree on the importance of integrating security aspects
early in the development of a secure system, in practice security is still treated as
an add-on since currently there is no silver bullet methodology and tool support
to achieve this [22, 23]. Nevertheless, several approaches towards this goal have
been proposed.

SecureUML [24, 25] is an extension of UML to specify role-based access con-
trol policies. A model transformation can be applied to an extended UML dia-
gram to generate system code that includes security infrastructure. Our work is
different from this in that SecureUML is specific for access control.

UMLsec [26] is an extension of UML that models security requirements, such
as secrecy secure information flow, secure communication link, etc. as stereo-
types, tagged values and constraints. This UML profile can be attached in model
elements of UML diagrams. It provides a means to evaluate a UML specification
for security. Our approach is different in that UMLsec does not facilitate reuse
of a secure system specification. Moreover, it does not specify the automatic
generation of code from design models.

In the aspect-oriented modeling, security mechanisms are modeled as as-
pects and are weaved into base specifications at join points. Mouheb et al. pro-
pose a mechanism to weave security aspects into UML 2.0 models at the design
phase [27]. Georg et al. propose using the aspect-oriented technology in combi-
nation with misuse models in order to perform security analysis [28]. Pavlich-
Mariscal et al. propose an approach to extend UML with security diagrams that
represent access control policies as aspects [29]. Our work is different in that the
aspect-oriented method does not consider the changes of the functional behaviors
of the systems after security aspects are weaved into base specifications.



In addition, the CORAS method [30] that contains seven steps of security
analysis was proposed. Recently, Refsdal and Stølen suggested an approach that
extends a security analysis to include the measurement of related key indicators
to determine the likelihood and consequences of unwanted incidents [14]. Dif-
ferently from those work, our approach also covers the integration of security
analysis into system design and implementation.

8 Concluding Remarks and Future Work

We propose an approach for integrating security aspects into system develop-
ment using collaboration-oriented models. The approach extends the SPACE en-
gineering method by including the asset-oriented security analysis. Particularly,
we demonstrate how security analysis is performed on a collaboration-oriented
system specification and how security mechanisms are designed as collaboration
models and integrated with the system specification.

Our initial experience shows that the collaboration models of security solu-
tions as presented in Sect. 5 are useful for developing security-aware systems
efficiently. The building blocks hide the complexity of the security mechanisms
facilitating their integration into the system specifications. Moreover, the secu-
rity library facilitates reuse of some countermeasures and the design of more
advanced security solutions.

The approach presented in this paper is not only well-suited for job separa-
tion between domain specific experts and security experts, but also provides a
mechanism to integrate the work of this two types of experts. Another benefit
of this approach is that it allows security solutions to be integrated early in the
development of secure systems.

In the future, our approach will be extended in various ways. Of course,
we will expand our libraries with building blocks for more complex security
mechanisms like authentication, access control, and intrusion detection. Further,
it is worthwhile to support carrying out the security analysis steps (see Sect. 3)
by meaningful tools. The formal semantics of the SPACE method based on
Temporal Logic makes it suitable to model checking. We already integrated
a model checker for functional properties to SPACE (see [4]). Likewise, one
can attach security-related checkers such as Scyther [17] that inspect the UML
models for the existence of vulnerabilities.

In addition, the graphical nature of the model descriptions in the form of
UML collaborations and activities leads to the utilization of graph rewriting
techniques. For example, in [15] we presented the use of graph rewriting for
information flow analysis based on the Decentralized Labeling approach by My-
ers [31]. There, both information and components are attached with static or
dynamic labels (see [32]). Special operators are used to check if information may
reach components providing access to principals not allowed to read it. This
approach can be added to our proposed method by attaching the labels to the
components and to the edges over which the information is passed.



The integration of security mechanisms can also be supported by graph
rewriting. For instance, the adding of the building block Secure Message Transfer
as a call behavior action can be realized by a quite simple graph rewriting rule
which, e.g., transforms the model in Fig. 4 automatically to the Secure Order
service in Fig. 6.

These and further analysis extensions may help to reduce the costs of risk
analysis and the integration of suitable security mechanisms to distributed sys-
tems. The lower costs may lead to a broader utilization of security analysis and,
in consequence, help to rise the security quality standard of software in general.

References

1. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons, Inc., New York, NY, USA (2008)

2. Herrmann, P., Kraemer, F.A.: Design of Trusted Systems with Reusable Col-
laboration Models. In: Proceedings of the Joint iTrust and PST Conferences on
Privacy, Trust Management and Security (IFIPTM07). IFIP 238, Moncton, New
Brunswick, IFIP, Springer-Verlag (July/August 2007) 317–332

3. Kraemer, F.A.: Engineering Reactive Systems: A Compositional and Model-Driven
Method Based on Collaborative Building Blocks. PhD thesis, Norwegian University
of Science and Technology (August 2008)

4. Kraemer, F.A., Sl̊atten, V., Herrmann, P.: Tool Support for the Rapid Composi-
tion, Analysis and Implementation of Reactive Services. Journal of Systems and
Software (2009) (to appear).

5. Kraemer, F.A., Herrmann, P.: Automated Encapsulation of UML Activities for
Incremental Development and Verification. In Schürr, A., Selic, B., eds.: Proceed-
ings of the 12th Int. Conference on Model Driven Engineering, Languages and
Systems (Models), Denver, Colorado, USA, October 4-9, 2009. Volume 5795 of
Lecture Notes in Computer Science., Springer (2009)

6. ISO/IEC: Common Criteria for Information Technology Security Evaluation.
(1998) International Standard ISO/IEC 15408.

7. Herrmann, P., Herrmann, G.: Security-Oriented Refinement of Business Processes.
Electronic Commerce Research Journal 6(3–4) (2006) 305–335

8. Baskerville, R.: Information Systems Security Design Methods: Implications for
Information Systems Development. ACM Computing Surveys 25(4) (December
1993) 375–414

9. Baskerville, R.: Designing Information Systems Security. Wiley & Sons, Chichester
(1988)

10. CCTA: SSADM-CRAMM Subject Guide for SSADM Version 3 and CRAMM
Version 2. CCTA, London. (1991)

11. Kienzle, D.M., Wulf, W.A.: A Practical Approach to Security Assessment. In:
Proceedings of the Workshop New Security Paradigms ’97, Lake District (1997)

12. Leiwo, J., Gamage, C., Zheng, Y.: Harmonizer — A Tool for Processing Infor-
mation Security Requirements in Organization. In: Proceedings of the 3rd Nordic
Workshop on Secure Computer Systems (NORDSEC’98), Trondheim (1998)

13. Lund, M.S., den Braber, F., Stølen, K.: Maintaining Results from Security Assess-
ments. In: Proceedings of the 7th European Conference on Software Maintenance
and Reengineering (CSMR2003), IEEE Computer Society Press (2003) 341–350



14. Refsdal, A., Stølen, K.: Employing key indicators to provide a dynamic risk picture
with a notion of confidence. In: Trust Management III, Boston, Springer (2009)

15. Herrmann, P.: Information Flow Analysis of Component-Structured Applications.
In: Proceedings of the 17th Annual Computer Security Applications Conference
(ACSAC’2001), New Orleans, ACM SIGSAC, IEEE Computer Society Press (De-
cember 2001) 45–54

16. Herrmann, P., Krumm, H.: Object-oriented security analysis and modeling. In:
Proceedings of the 9th International Conference on Telecommunication Systems
— Modelling and Analysis, Dallas, ATSMA, IFIP (March 2001) 21–32

17. http://people.inf.ethz.ch/cremersc/scyther/

18. http://web.comlab.ox.ac.uk/people/gavin.lowe/Security/Casper/

19. Courtney, R.: Security Risk Assessment in Electronic Data Processing. In:
AFIPS Conference Proceedings of the National Computer Conference 46, Arling-
ton, AFIPS (1977) 97–104

20. http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/

CryptoSpec.html

21. http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.

html

22. Siponen, M., Heikka, J.: Do secure information system design methods provide
adequate modeling support? Information and Software Technology 50(9-10) (2008)

23. Vaughn, Jr., R.B., Henning, R., Fox, K.: An empirical study of industrial security-
engineering practices. Journal of System and Software 61(3) (2002) 225–232

24. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From uml mod-
els to access control infrastructures. ACM Transactions on Software Engineering
Methodology 15(1) (2006) 39–91

25. Lodderstedt, T., Basin, D.A., Doser, J.: Secureuml: A uml-based modeling lan-
guage for model-driven security. In: UML ’02: Proceedings of the 5th International
Conference on The Unified Modeling Language, London, UK, Springer-Verlag
(2002) 426–441

26. Jürjens, J.: Secure System Development with UML. Springer-Verlag (2004)
27. Mouheb, D., Talhi, C., Lima, V., Debbabi, M., Wang, L., Pourzandi, M.: Weaving

security aspects into uml 2.0 design models. In: AOM ’09: Proceedings of the 13th
workshop on Aspect-oriented modeling, New York, NY, USA, ACM (2009) 7–12

28. Georg, G., Ray, I., Anastasakis, K., Bordbar, B., Toahchoodee, M., Houmb, S.H.:
An aspect-oriented methodology for designing secure applications. Information
and Software Technology 51(5) (2009) 846 – 864 SPECIAL ISSUE: Model-Driven
Development for Secure Information Systems.

29. Pavlich-Mariscal, J., Michel, L., Demurjian, S.: Enchancing uml to model custom
security aspects. In: AOM ’07: Proceedings of the 11th workshop on Aspect-
oriented modeling. (2007)

30. Braber, F., Hogganvik, I., Lund, M.S., Stølen, K., Vraalsen, F.: Model-based secu-
rity analysis in seven steps — a guided tour to the coras method. BT Technology
Journal 25(1) (2007) 101–117

31. Myers, A.C.: JFlow: Practical Mostly-Static Information Flow Control. In: Pro-
ceedings of the 26th ACM Symposium on Principles of Programming Languages
(POPL’99), San Antonio (1999)

32. Zheng, L., Myers, A.C.: Dynamic security labels and static information flow con-
trol. International Journal of Information Security 6(2) (2007) 67–84


