Service Specification by Composition of Collaborations — An Example

Frank Alexander Kraemer

Peter Herrmann

Norwegian University of Science and Technology (NTNU), Department of Telematics
N-7491 Trondheim, Norway, {kraemer, herrmann}@item.ntnu.no

Abstract

We outline a specification style for reactive services
that focuses on UML 2.0 collaborations and activities as
reusable specification building blocks. In contrast to tra-
ditional component-based approaches, a collaboration di-
rectly describes the interactions between the components as
well as the internal behavior necessary for a component to
take part in it. To compose services from such reusable col-
laborations, we use events identified as input and output
pins on the activities that are connected together. While our
approach is formally settled in temporal logic, in this paper
we focus on an example specification from the viewpoint of
a service engineer.

1. Introduction

In an accelerated market for mobile communications,
with its variety of devices, technologies and operators, the
rapid provisioning of new services is an important compet-
itive factor to meet customer demands. A closer look on
services reveals that we often find identical or slightly ad-
justed patterns of functionalities in several services, so that
the idea of combining services from existing elements sug-
gests itself. Combining systems from components has been
done for decades. The notion of components, however,
is orthogonal to that of services, as a service typically re-
quires the coordinated effort of several cooperating compo-
nents. Therefore, service descriptions are scattered among
the component descriptions, and reusing a service would
mean to combine parts of various component descriptions,
which implies a lot of manual work and is error-prone.

Instead, by specifying the interactions of the participat-
ing components as well as their required local behavior in
form of so-called collaborations, we can describe services
in a self-contained way. Collaborations express patterns
of behavior between several participants and may either
be elementary or composed from other ones. Thus, they
enable a form of reuse that goes beyond that of reusing
(physically concentrated) components; existing collabora-

tions involving several components may be directly reused
as well, so that services can be created by combining them
from sub-services. Some service examples were presented
in [5, 10, 13, 14], and experience showed that focusing on
collaborations results in service specifications that are quite
intuitive to understand.

The challenge of service engineering is the correct com-
position of service patterns specified by collaborations.
While we use the compositional Temporal Logic of Actions
(cTLA, [8]) to describe compositions of collaborations in
form of process compositions, in this paper we focus on
UML 2.0 collaborations and activities as a notation conve-
nient for service engineers. As an example, we utilize an ac-
cess control system (ACS), which first appeared in [3] and
was later adapted in [4]. The system is used to restrict the
opening of a door to a group of trusted people which have
to identify themselves with an identity card and a personal
identification number. This identification data (referred to
as pid) can be provided at a panel next to the door. The
panel and the door opening mechanisms are handled by a
local control station which is also installed close to the door.
The local station is connected with a central station calling
both an authentication and an authorization service which
check the pid by accessing corresponding databases. Fig-
ure 1 depicts a UML 2.0 collaboration modeling the coop-
erations between the various components by means of col-
laboration uses. The local station accesses the panel and
the door opener according to the collaboration uses p and d
while its interaction with the central node is specified by .
The central station verifies the personal data by calling the
authentication and authorization services modeled by the
collaboration uses a/ and a2. Their corresponding servers
obtain the needed data from databases as described by the
collaboration uses 7/ and r2.

While the UML collaborations describe the structural as-
pects of the composed services (i.e., the relation between
components and collaboration roles), we specify the behav-
ioral aspect by means of UML 2.0 activities. In particu-
lar, we use activities for both elementary collaborations and
the systems combined from collaborations. For example, in
Fig. 3, we model the behavior of the access control system.

IEE l-:

COMPUTER
SOCIETY

Proceedings of the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT 2006 Workshops)(WI-IATW'06)
0-7695-2749-3/06 $20.00 © 2006 IEEE

N

authentication

F el -
E -P-':d: Door Control > & e Q}\\?} server ,\\ze“ o o
o S & " 31. Authenticate >-2--- C . _?3_9 authentication
door ~ . -7 -7 data base
Lo =~ - R -
2 &@ local central & < a2: Authorize >----- }___9 authorization
> K R o X - data base
-7 station station & .
& authorization
server
Figure 1. Access control system composed of collaborations
Access Control System | Fork Node. The incoming flow is split

central station

p: Panel
Control

l pid [

— into several flows.
authentication server . . .
— Join Node. After all incoming flows

™ arrived, the outgoing flow starts.

Merge Node. The outgoing flow is
activated when either of the incoming

th

request

okE al: flows arrive.
.] 4 Decision Node. One of the outgoing
’ = Authenticate response n 1 th &—<>j flows is activated. If joins succeed a
nokl= = DBR t . decision, the first complete join fires.
etrieve

Starting Node. The activity starts
once the input arrives.

rh
d: Door open
Control

)

i—I:f?lp—ouz

pid [

a2:

Authorize

authorization server __— L
Terminating Nodes. The activity

terminates and emits a parameter. (a)
single termination event, (b) multiple
but alternative terminations.

request

A
response
o = r2: h
DBRetrieve

Streaming Nodes. These nodes emit
or consume parameters while the
activity is running.

Figure 2. System activity to couple the collaborations of the access control system

Hereby, each collaboration use of Fig. 1 is represented by a
call behavior action referring to the activity describing the
behavior of the corresponding collaboration. In addition,
the activity contains control nodes and flows to couple the
different collaborations with each other by connecting their
input and output pins. The details of Fig. 2 will be explained
in Sect. 3.

The structure of collaborations as well as the way to cou-
ple them facilitates the reuse of activities. For example, both
the collaboration uses r/ and r2 are identical and can be in-
stantiated from a single collaboration type. Moreover, the
collaboration uses al and a2 are very similar and can be
based on the same UML template. Thus, systems of a spe-
cific domain can often be composed of reoccurring building
blocks that are selected from existing libraries. The com-
position of these building blocks is specified by pairs of a
UML collaboration and a UML activity as exemplified in
Fig. 1 and Fig. 2. These abstract diagrams give (in our opin-
ion) a good overview of the system and are rather intuitive.

Another advantage of collaboration-oriented modeling is
the fact that it supports the convergence of information and
communication technology modeling concepts (cf. [2]). In
particular, we can encapsulate telecommunication-specific
properties (e.g., complex synchronization aspects of peer-
to-peer communication) within collaborations. Thus, devel-
opers familiar with the concepts of the computing domain

but not with the telecom domain should have less trouble
to create sound distributed systems. One can further under-
stand collaborations as a novel way to describe component
interfaces. In contrast to behavioral interfaces (cf. [1]), they
may describe not only behavior guaranteed by the compo-
nent itself but also behavior of the component environment
which is helpful to use the component in a suitable way.

In the following, we will exemplify our approach by
means of the ACS example. In Sect. 2 we introduce the
collaborations of this system in detail while Sect. 3 is de-
voted to describe the composition of the collaborations to
an overall system model.

2. Collaborations

To validate the personal identifiers (pid) provided by a
user who requests access through the door, the central node
participates in the collaboration Authenticate together with
the authentication server. This is specified by the collabo-
ration use al :Authenticate in Fig. 1, where the central node
plays the role client and the authentication plays the role
server. (The role bindings are depicted as labels in a 45° an-
gle). The behavior of the collaboration is described by the

Proceedings of the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT 2006 Workshops)(WI-IATW'06)
0-7695-2749-3/06 $20.00 © 2006 IEEE

IEE l-:

COMPUTER

SOCIETY

Authenticate

client server

= prepare

stm Authenticate} stm client}

Tpid
pid

[ok] [nok]
okE&l‘_
®
ﬂokE'——l

(@) (b)

request - m T~ <
T client Authenticate \,—| server
validate response \ . : o v

id
p - nok ok
Authenticate request | | @ ®

ok client server request
response | | stm server }
nok response

,request
() (d)

© © % response

Figure 3. Internal and external specifications for the authentication

UML 2.0 activity in Fig. 3 (a)'. The activity is divided in
two partitions, one for each collaboration role (client and
server). It is started on the client side, when a pid is pro-
vided as parameter at the input pin. The pid is then directly
sent to the server, where it is converted into a database re-
quest in the call operation action prepare. Thereafter it is
the task of the collaboration between the server and the
database to provide the stored user information. To get
that information, the request leaves the activity Authenti-
cate and the server waits for the reception of the response.
This is modeled with the input and output pins request and
response. (As the parameters may pass the border of the
activity while it stays active, these are so-called streaming
parameters, denoted by the filled square.) Depending on the
validity of the pid, the server may decide to report ok or nok
to the client. This result is forwarded to the corresponding
output pin, and the activity is terminated by an activity fi-
nal node (@). (Since ok and nok are alternative output pins,
they must belong to different parameter sets, indicated by
an additional box around the output pin.)

As mentioned in the introduction, the authorization,
where the central station asks an authorization server
whether the identified person has access to the requested
area, behaves similarly. We can therefore create a common
collaboration template and put it into a library of reusable
service building blocks. To provide an easier access, we
supply the collaboration with a more abstract description
that hides the details of its internal realization. This abstract
description consists of the declaration of the UML collab-
oration (Fig. 3 b) as well as the description of the activity
with its externally visible pins (Fig. 3 c¢). Each pin corre-
sponds to an event that is visible to the participants. The
assignment of a pin to one of the activity partitions shows
which collaboration role can observe or cause an event. In
addition, we define the external behavior (i.e., the order of
events passing the pins) by means of state machines. For
example, state machine Authenticate in Fig. 3 (d) explains

INote that a UML 2.0 collaboration, besides being a structured clas-
sifier with parts and connectors, is also a behaviored classifier that can
describe its behavior for example by means of an UML 2.0 activity [12].

that the start of the collaboration by providing the pid leads
to a request. The name of each transition corresponds to
the name of a pin of the activity. The state machines may
cover all events (as in stm Authenticate) or only those vis-
ible to the individual collaboration roles, like for the state
machines stm client and stm server.

Depending on the response from the central node, the
local node may open the door, which is expressed in the
collaboration Door Control in Fig. 4. We consider the door
to be part of the environment, and mark its activity parti-
tion therefore as «external». The door mechanism simply
receives signals from the controller that activates or deac-
tivates a magnet opening the lock. On the controller side,
a timer automatically triggers the sending of the signal to
close the lock after a while. Therefore, the local station par-
ticipating in this collaboration only has to trigger the open-
ing of the door. This collaboration is a simple example of
including useful environment behavior in an interface de-
scription. Namely, the collaboration can, for instance, be an
interface description provided by the producer of the door
control system, which suggests a useful function to the con-
troller of the door (i.e., the timeout mechanism).

3. Coupling and Composition

While the collaboration in Fig. 1 covers the structural as-
pect of the composed system, we use the activity in Fig. 2 to
describe how the events of the individual collaborations be-

Door ™) open
Control ™

Door Control

«external» door control

lock
[unlock{
&

< open

&® ‘X stm control | ,
open
magnet off] & (jv‘
® ®
(a) (b)

Figure 4. Description for the door control

IEE l-i

COMPUTER
SOCIETY

Proceedings of the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT 2006 Workshops)(WI-IATW'06)
0-7695-2749-3/06 $20.00 © 2006 IEEE

tween the system components are coupled with each other,
so that the desired overall system behavior is obtained.
Therefore, the activity contains a separate call behavior ac-
tion for each collaboration use of the system. As outlined
in Sect. 1, each of these call behavior actions refers to the
activity describing the behavior of the corresponding col-
laboration. The initial nodes (@) mark the collaborations
(or activities, resp.) that are started together with the en-
tire system. When a user requests access via the panel,
p: Panel Control will emit a pid that is transfered to the
central station via collaboration ¢: Transfer. Once arrived
at the central station, both the authentication and authoriza-
tion collaborations are started in parallel which is expressed
by the fork node in the partition of the central station. Ac-
cording to the activity in Fig. 3 (a), Authenticate makes a
database request, modeled by collaboration r/: DBRetrieve
and terminates with one of the alternative results ok or nok.
The collaboration for the authorization behaves similarly.
The coupling of the results of the authentication and autho-
rization is modeled by the decision, join and merge nodes
in the partition of the central station. Obviously, an ok may
only be sent to the local station if both the authentication
and the authorization terminated with an ok. In all other
cases, the response is nok. If the local station receives ok,
it displays this on the panel and simultaneously opens the
door via collaboration d: Door Control, which is modeled
by the fork in the local station. Otherwise, the panel in-
dicates the denied access to the user and the door remains
closed.

The activity in Fig. 2 and the collaboration in Fig. 1 show
how reusable specification building blocks in form of col-
laborations can be composed together. Of course, there are
rules that have to be obeyed when the activity diagrams,
state machines and collaborations are created:

e The activity diagram must be kept consistent with the
collaboration it describes. In particular, for each col-
laboration use there must be a call behavior action
pointing to the corresponding activity, and each activ-
ity partition has to correspond to a collaboration role.
Moreover, the role bindings of the collaborations must
be consistent with the assignments of the pins to the
activity partitions.

e In an activity, there must always be exactly one trig-
gering event (like an output or termination) in a set of
connected pins. In particular, two output pins may not
be connected directly. Instead, they may, for example,
be connected via a merge node (<), describing that any
of them can trigger a third event.

o If an input pin declares a parameter, it must be pro-
vided by a connected object flow, so that data types are
consistent.

These rules can easily be checked by inspecting the UML
model syntactically. Besides them, there are properties that
may require model checking. For example, if the behavior
of an activity corresponds to the interface description given
with the state machine, or if a composition of collaboration
can actually terminate. We outline our way to check these
descriptions within the explanation of the tool suite below.

In the example in Fig. 2, we use only edges linking
nodes within a particular partition guaranteeing an easy
transformation of the collaboration-oriented model into a
component-oriented model. Nevertheless, one can also use
edges crossing partition boundaries. These edges are re-
fined to signal transfers between the components realizing
the linked partitions.

4. Concluding Remarks

The collaboration-oriented specification style introduced
above is a step of a more comprehensive service engineering
approach depicted in Fig. 5. Services are specified by cre-
ating, composing, and refining collaborations as described
in this paper. Whenever possible, one may reuse existing
collaboration building blocks gathered in a library. Syntac-
tic inspections of the service specification give feedback to
the user, for example, whether the activity diagrams obey
the rules and constraints as outlined above. Once a service
specification is consistent, it may, in turn, be added to the
library for later reuse. For executing a service, the specifi-
cation may be transformed into UML 2.0 components and
state machines, which are a suitable input for our code gen-
erators producing implementations for various service exe-
cution platforms [10].

To ensure the correctness of service compositions and
the model transformations, we use the linear-time temporal
logic cTLA [8] as an underlying formalism. As UML activ-
ities have a “Petri-net like semantics” [12], they describe a
state transition system that can easily be expressed by cTLA
processes [6]. The coupling of collaborations by means of
input and output pins of the corresponding activities, in-
troduced here, can be directly mapped to the composition
of processes by joint actions in cTLA. Besides this kind
of coupling, cTLA also facilitates the so-called constraint-
oriented specification style [15] where certain constraints
of a collaboration can be specified separately. This cou-
pling principle can also be used in UML activities facilitat-
ing reuse further. It enables several UML actions of differ-
ent collaborations to be joined with each other so that they
are carried out synchronously. cTLA also provides the con-
cept of specification frameworks (cf. [7, 8, 9]) which are a
complement to the collaboration libraries discussed above.

This double appearance of our service specifications
both as UML models and as temporal logic formulas en-
ables us to analyze them formally. A transformation into

IEE l-:

COMPUTER
SOCIETY

Proceedings of the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT 2006 Workshops)(WI-IATW'06)
0-7695-2749-3/06 $20.00 © 2006 IEEE

Library

QO

Editing Support

‘ Composition Operations

‘ Refinement Operations

‘ Syntactic Inspectors

A/

‘ Semantic Inspectors

Activities

Model Transformation

J.J.

Service Specifications
UML Collaborations,

Code Generation

—

Executable System
Service Application Code
Execution Framework

Service Components
UML State Machines,
Composite Structures

Figure 5. Approach for service engineering

TLA™[11] makes service specifications a possible input for
the model checker TLC [16], examining them for semantic
properties. In particular, one must prove that an internal col-
laboration fulfills the properties of the external description,
which corresponds to a refinement proof in cTLA.

Logical reasoning is also needed to verify the step that
carries a service specification based on collaborations and
activities over to the executable form based on UML com-
ponents and state machines. While we implemented this
step in form of a UML model transformation, we use cTLA
refinement proofs to verify its correctness. For this reason,
we described the cTLA style cTLA/e [10] that aligns the
semantics of UML 2.0 state machines with the mechanisms
of our execution platforms. Thus, we formally established

(7]

(8]

(9]

P. Herrmann. Formal Security Policy Verification of Dis-
tributed Component-Structured Software. In H. Konig,
M. Heiner, and A. Wolisz, editors, Proceedings of the 23rd
IFIP International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE’2003), Berlin,
Germany, volume 2767 of Lecture Notes in Computer Sci-
ence, pages 257-272. Springer-Verlag, September 2003.

P. Herrmann and H. Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317-337,
2000.

P. Herrmann and H. Krumm. A Framework for the Haz-
ard Analysis of Chemical Plants. In Proceedings of the 11th
1IEEE International Symposium on Computer-Aided Control
System Design (CACSD’2000), pages 3541, Anchorage,
2000. IEEE CSS, Omnipress.

the target of the refinement process. This model transforma- (10 F. A. Kraemer, P. H.errmann’ and R. Br&l?' Aligning
. - . . UML 2.0 State Machines and Temporal Logic for the Ef-
tion will be part of our tool suite ARCTIS for the analysis, ficient Execution of Services. In R. Meersmann and Z. Tari,
refinement, composition and transformation of interactive editors, Proceedings of the 8th International Symposium on
services, supporting the development process all the way Distributed Objects and Applications (DOA), 2006, Mont-
from the early specification until executable systems. pellier, France, volume 4276 of Lecture Notes in Computer
Science, pages 1613-1632. Springer—Verlag Heidelberg.
[11] L. Lamport. Specifying Systems. Addison-Wesley, 2002.
References [12] Object Management Group. Unified Modeling Language:
Superstructure, April 2006.

[1] A.Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. (13] J.E. Y Rosseb‘z’ and R.].3raa.k. Towards a FrameW(.)rk of A.u'
Making Components Contract Aware. [EEE Computer, thgqtlcgtlon an.d Authorlzap.on Patterns for Ensuring Avail-
32(7):38-45, July 1999. ability 11.1 Service Composition. .In f’.roceed.ing.s .of the Ist

[2] R. Braek and J. Floch. ICT Convergence: Modeling Issues. Inte.rnanonal’Conference on Availability, Reliability and.Se-
In D. Amyot and A. W. Williams, editors, SAM’04 - Fourth ;urlty ;?)ggs 06), pages 206-215. IEEE Computer Society

. ress, .
égz Z;:;éféii::i”g;i’; ’2‘/3()713;‘36?3;;;;6;6%’: Notes in [14] R.T. Sanders, H. N. Castején, F. A. Kraemer, and R. Brzk.
’ T P Using UML 2.0 Collaborations for Compositional Service

[3] R. Brek and @. Haugen. Engineering Real Time Systems: Specification. In ACM / IEEE Sth International Confer-
An Obj ect—One.nted Met.hodology Usmg SDL. The BCS ence on Model Driven Engineering Languages and Systems,
Practitioner Series. Prentice Hall International, 1993. 2005.

[4] M. Broy and K. Stglen. Specification and Development of [15] C. A. Vissers, G. Scollo, M. van Sinderen, and H. Brinksma.

Interactive Systems: Focus on Streams, Interfaces, and Re-
finement. Springer, 2001.

[5] H. N. Castejon and R. Brek. A Collaboration-based Ap-
proach to Service Specification and Detection of Implied
Scenarios. ICSE’s 5th Workshop on Scenarios and State Ma-
chines: Models, Algorithms and Tools (SCESM’06), 2006.

[6] G. Graw and P. Herrmann. Transformation and Verification
of Executable UML Models. Electronic Notes on Theoreti-
cal Computer Science, Elsevier Science, 101:3-24, 2004.

[16]

Specification Styles in Distributed System Design and Veri-
fication. Theoretical Computer Science, 89:179-206, 1991.
Y. Yu, P. Manolios, and L. Lamport. Model Checking TLA+
Specifications. In L. Pierre and T. Kropf, editors, Proceed-
ings of the 10th IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and Verification
Methods (CHARME’99), volume 1703 of Lecture Notes in
Computer Science, pages 54—66. Springer-Verlag, 1999.

IEE l-i

COMPUTER
SOCIETY

Proceedings of the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT 2006 Workshops)(WI-IATW'06)
0-7695-2749-3/06 $20.00 © 2006 IEEE

