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Abstract. Formal description techniques, verification methods, and their tool-based automated application
meanwhile provide valuable support for the formal analysis of communication protocol designs. Never-
theless the practical analysis of modern protocols still requires relatively great efforts and therefore many
protocol developments do not employ formal methods. In that context the transfer protocol framework
aims to complementary support. It supplies a rich collection of specification modules and guides their effi-
cient composition to service and protocol specifications. Moreover the functional relations between service
properties and implementing protocol mechanisms have been investigated systematically. The framework
provides a collection of corresponding theorems to be applied to protocol correctness proofs. In result
protocol verification can be reduced to the selection, instantiation, and proper arrangement of framework
theorems. The verification process can further be supported by special tool-assistance. The tool COAST
identifies the compositional structure of a protocol specification mechanically and selects according frame-
work theorems. It splits service property proofs into arrangements of subproofs where the subproofs can
mainly be accomplished by application of the selected framework theorems. After outlining the general
transfer protocol framework approach we concentrate on the introduction of the tool COAST. We describe
its functions and clarify its application by means of the verification of the complex real-life high-speed data
transfer protocol XTP.
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Introduction

Due to the high performance demands of modern highspeed and multimedia applications
many new data transfer protocols and protocol variants were recently developed. Since
most of these protocols are very complex, one should support their design by formal
methods (cf. [Gibbs, 17]). In reality, however, protocols are frequently developed with-
out any formal support, although standardized formal description techniques (ISO/OSI:
ESTELLE [13] and LOTOS [41], ITU: SDL [49]) are available. Therefore protocols are
often designed by means of incomplete and ambiguous protocol descriptions. Further-
more, many protocol developers omit the development of abstract service specifications,
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which describe the communication services to be provided by the protocols. If, however,
a service specification is lacking, there is no way to check the correctness of the protocol
with respect to the services to be provided. Thus, design errors are often detected in late
development phases and lead to costly delays.

While many protocol developers acknowledge the benefits of formal modeling and
analysis in principle, the methods are seldom put into real practice since they are difficult
to apply and mostly require considerable efforts of well-educated experts. Therefore
most verification approaches are meanwhile accompanied by tool-assistance in order to
facilitate the application and reduce its costs. Mainly two major approaches to tool-
supported formal protocol verification were developed, model-checking and theorem-
proving.

Model-checking relies on a finite model of the protocol (cf. [Clarke et al., 6]).
Mostly a finite state transition system is used which models the composition of under-
lying services and all protocol entities. The service to be provided is either also defined
by a finite state machine or by a temporal logic formula which describes the properties
of the service. Due to the finiteness of the models, the reachable states and transitions of
the protocol model can be explored exhaustively and the model-checker tool can in prin-
ciple fully automatically decide if the protocol is a correct model of the service or not.
In practice, however, one major problem exists, the so-called state explosion. Since pro-
tocol models can have very large sets of reachable states, verifications often fail because
of their enormous time and space requirements.

Model-checking based systems include CADP [Garavel et al., 15], Concurrency
Workbench [Cleaveland et al., 7], COSPAN [Kurshan, 35], HyTech [Alur et al., 2],
Mur� [Dill et al., 8], SMV [McMillan, 44], SPIN [Holzmann, 30], TLC [Yu et al., 53],
and UPPAAL [Larsen et al., 39]. Many of these tools apply special algorithms sup-
porting the efficient representation of large state sets (e.g., supertracing [Holzmann, 29],
“on-the-fly” model-checking [Fernandez and Mounier, 14], and reachability graph pro-
jections [Ip and Dill, 32; Krumm, 33]). Thus, relatively complex communication pro-
tocols can be verified by model checking nowadays. Nevertheless, high-speed transfer
protocols like XTP [52] and MSP [La Porta and Schwartz, 38] support a wide spectrum
of quality of service demands and therefore comprise rich sets of interacting protocol
mechanisms. Resulting protocol models suffer from state space explosion and model-
checking can only be applied to simplified models.

The second major protocol verification approach is based on symbolic logical
deduction and applies mechanical theorem provers. Here, both the protocol and the
provided service are specified by logical formulas (e.g., predicate logic, higher order
logic, temporal logic). Based on the axioms and inference rules of the logic a theorem-
prover tool tries to find a proof that the protocol formula implies the service formula.
Theorem-prover based approaches include EHDM [Rushby et al., 48], HOL [Chou, 5],
Isabelle [Paulson, 47], Larch [Guttag and Horning, 19], Nqthm [Boyer et al., 3], OT-
TER [McCune, 43], PVS [Owre et al., 46], and TLP [Engberg et al., 12].

Due to the application of symbolic reasoning the state space explosion problem
does not exist directly, even protocols and services with infinite state spaces can be han-
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dled. Indirectly, however, it is present, too, since automated theorem provers have to
manage search spaces in order to find proving deduction chains. The size of the search
spaces and the time of searches again exceeds practical limits if abstract service proper-
ties shall directly be inferred from detailed protocol descriptions. Since many logics are
undecidable, even in principle there is no guarantee that proof searches will terminate
in finite time. Therefore theorem provers usually require intensive human guiding. The
user has to split and structure the verification by explicit introduction of lemmas to be
proven in the course of separate proof sessions. Moreover in many cases even a lemma
proof can be accomplished only if the user guides the proof interactively and controls the
activation of suitable axiom sets and deduction strategies. Additionally the efforts for the
special design of suitable lemmas have to be considered. Very often lemmas are needed
which express subtle invariant properties. They have to be developed in a longer process
of alternating proof trial and lemma strengthening steps. In summary theorem-prover
based protocol verifications tend to be time-consuming and expensive (fi., a theorem-
prover based verification of the relatively simple Bounded Retransmission Protocol, an
Alternating Bit Protocol extension which tackles data losses by time-out triggered re-
transmissions and provider aborts, needed an effort of three man-months [Havelund and
Shankar, 20]).

During formal verification processes one moreover experiences a further problem
which leads to considerable additional efforts. Usually the verification not only exposes
errors of the logical protocol design stemming from wrong design decisions. Quite often
the verification also uncovers several specification bugs which result from wrong formal
modeling of abstractly correct ideas. Thus verification processes are stamped by time-
consuming iterations of proof trials, bug detection, and correction.

We were aware that most existing approaches for the formal design of communi-
cation systems mainly concentrated on two topics, on tool-support and on general fun-
damentals of suitable specification and verification techniques, and considered a third
topic complementarily, the support of users by means of application-domain specific
theories [Herrmann and Krumm, 26,27]. The theories can provide conceptual frame-
works and can supply predefined specification and verification elements. They can pre-
pare and facilitate the formal modeling and reasoning tasks and can directly support the
systematic understanding of application problems and methods.

For the domain of communication protocol design we developed the so-called
transfer protocol framework [Herrmann and Krumm, 24,26]. It defines a basic archi-
tecture for formal compositional specifications and supplies corresponding generic re-
usable specification modules. Thus it supports the efficient development of bug-free
protocol and service specifications. Moreover the framework supplies theorems. Each
theorem describes an implication between a certain protocol mechanism subsystem and
a certain service property. The theorem states that the protocol mechanisms correctly
implement the service property. These theorems act as re-usable verification elements.
The proof that a certain protocol as a whole correctly implements all required proper-
ties of the service to be provided, can be structured into subproofs where each subproof
corresponds to a theorem instance. Thus the theorems substitute subproofs and reduce
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verification efforts substantially. Furthermore the design of the structuring of the main
proof is also supported by the framework since that structuring corresponds well with
the compositional structure of the protocol specification.

In consequence, the transfer protocol framework reduces the task of protocol veri-
fication to a series of subtasks:

– identification of the compositional structure of the specifications,

– design of a corresponding structuring of the proof into subproofs,

– design of a theorem instance for each subproof.

The design of a theorem instance consists of the selection of a generic theorem from
the set of theorems of the framework followed by the choice of a suitable theorem para-
meter setting. The parameter setting of a theorem has to correspond with the parameter
settings of the specification modules of the compositional protocol specification. The
theorems are accompanied by conditions which constrain the parameter settings accord-
ingly. Therefore, in fact, still logical proofs are necessary. Those parameter condition
proofs, however, are relatively simple and can usually be accomplished without prob-
lems.

In order to enhance the verification support of the transfer protocol framework fur-
ther, we developed the special tool COAST [Drögehorn, 10]. COAST is supplied with
the compositional specification of the protocol and with the specification of the service
to be provided. It relies on a database holding all framework theorems and their descrip-
tions. COAST analyzes the compositional structure of the protocol specification and
automatically selects the theorems which are needed for the protocol verification. It de-
duces the parameter settings of the theorems from the parameter settings of the protocol
specification components. Moreover it prepares the parameter condition proofs. Finally,
COAST translates the condition formulas into the syntax of a frontend tool [Geist, 16]
for the theorem prover OTTER [McCune, 43]. Because of that preparation the theorem
prover front-end tool as well as the theorem prover can be engaged without any addi-
tional interaction. OTTER usually accomplishes the proofs without interactive guidance
due to the simplicity of the parameter conditions.

In the sequel we introduce the verification tool COAST in more detail. We de-
scribe its structure and functionality. Moreover we clarify its application by outlin-
ing the COAST-based verification of the high-speed transfer protocol XTP [52]. Ad-
ditionally we give a concise overview over the context of COAST. Our conception
of framework-based specification and verification and the transfer protocol frame-
work employ the formal specification technique cTLA [Herrmann and Krumm, 23;
Mester and Krumm, 45]. cTLA is based on Lamport’s TLA (Temporal Logic of Ac-
tions) [Lamport, 36] and supports the modular description of process systems. Similar
to LOTOS [41] and to DisCo [Kurki-Suonio, 34], systems are composed from processes
which interact via synchronous joint actions. The process composition of cTLA, how-
ever, is of particular interest since it has the character of superposition which passes
safety and liveness properties of subsystems over to embedding systems.
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1. Framework-based formal modeling and cTLA

A formal modeling framework supplies re-usable elements and provides architecture
guidelines in order to support the efficient development of specifications and correctness
proofs.

The supply of re-usable building blocks for specifications depends on a suitable
conception for specification modules. On the one hand a module shall represent typical
elements of protocols and services in a way that supports their direct integration into
specifications. On the other hand the elements shall be really re-usable. Therefore they
shall be employable in a wide range of applications. Under these requirements we fol-
low the argumentation of Vissers et al. [50] pleading for the structuring of protocol and
service specifications into processes where two sorts of processes are of interest. So-
called resource-oriented processes represent active components of a system as they are
parts of implementations or implementation-near logical structures. So-called constraint-
oriented processes correspond to more abstract views and represent logical conditions
for behaviors occurring within the system. Constraint processes can refer to certain parts
of a system and to special points of view and thus can be devoted to separated aspects
of a system. Furthermore, a notion of process types supports re-usability. Specification
modules do not define processes directly. Instead they define process types which can
depend on generic parameters and can be employed for the instantiation of a wide range
of process instances. The design of the specification language cTLA considers those re-
quirements. In particular, cTLA supports the free combination of resource-oriented and
constraint-oriented structures and therefore can be applied on different levels of abstrac-
tion.

The notion of theorems is the well-known general conception for re-usable proof
building blocks. A theorem is a proven formula and can be used as axiom in the proof
of other formulas. Protocol verifications, however, usually need quite special theorems
reflecting particular combinations of protocol mechanisms and mechanism parameter
settings. Therefore the practical re-usability is restricted and further means are of in-
terest. With respect to special mechanism parameter settings, theorems can also have
parameters enhancing their range of application. With respect to particular combinations
of mechanisms, means are of interest which support the separation of aspects in a way
that protocol correctness proofs can be split into a series of separated proofs. Then the
theorems can also be devoted to single aspects each and the theorems can have a wider
range of application.

The solution to that structuring problem of verifications and theorems is based
on the special character of process composition in cTLA. Here, process specifications
correspond to temporal logic formulas and the specification of a system which is com-
posed from processes corresponds to the logical conjunction of the process formu-
las. Syntactical restrictions provide for the consistency of the conjunction. Therefore
the specification of a system implies all specifications of the constituting processes.
All relevant properties of processes are also properties of a system as a whole. Thus
process composition has the character of superposition (cf. [Chandy and Misra, 4;
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Kurki-Suonio, 34]) and verifications of system properties can be based on separated
consideration of subsystems.

In cTLA, the superposition-based verification of systems is called structured ver-
ification. Assume Sys to be a system which is composed from a series of processes
Proc1, Proc2, . . . , Procn and Spec to be a system property which can be described by a
conjunction of subformulas Sf 1 ∧ Sf 2 ∧ · · · ∧ Sf m. Furthermore, assume that Sys has a
suitable structuring, i.e., for each subformula Sf i of Spec there is a subsystem Subi of
Sys which consists of a subset of the processes Proci1 , Proci2, . . . , Procin in a way that
the implication Subi ⇒ Sf i is true. Then the verification that the system Sys has the
properties described by Spec is accomplished by the proof of the formula Sys ⇒ Spec
which can be deduced from the series of implications Subi ⇒ Sf i . The different subim-
plications Subi ⇒ Sf i correspond directly with different aspects of the system. During
framework design the interesting aspects can be identified and each theorem can con-
centrate on a subimplication.

The properties which can be expressed by cTLA process and system descriptions
are safety and liveness properties as they are introduced for state transition systems
in [Alpern and Schneider, 1]. In order to support convenient fine-grained aspect struc-
tures we propose to separate safety and liveness strictly and moreover to split safety
as well as liveness considerations into a series of more basic aspects (e.g., the transfer
protocol framework proposes separated protocol safety aspects like packet corruptions,
packet loss, and packet reordering).

2. cTLA

In cTLA, specification modules describe process types where each process is modeled
by a state transition system. As an example we refer to the definition of the process C

in figure 1. This process specifies the service constraint that, except for phantoms, all
delivered data units are transmitted between the users of a service without corruptions.

The syntax of cTLA is oriented at programming languages like Modula 2. The
process header consists of the keyword PROCESS, the process name C, and option-
ally the list of generic parameters. In our example the generic parameter usd models
the set of data units which can be transfered between two service users. The keyword
IMPORT refers to the inclusion of other modules (i.e., Symbols) which contain defini-
tions of data types, functions, and constants. The state space of a process is modeled
by variables which are declared in the section VARIABLES. In our example process C

buf, describing a set of pairs of a sequence number1 and an user data unit, is the only
variable. In buf all data units are stored which were ever sent by the transmitting ser-
vice user. A predicate headed by the construct INIT models the set of initial states.
Thus, in the initial state of C the variable buf corresponds to the empty set. The state
transitions are modeled by actions which are defined in the section ACTIONS. An ac-
tion models a set of transitions. It is a predicate about a pair of a current and a next

1 The data type key, which specifies the set of available sequence numbers, is declared in process Symbols.
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PROCESS C ( usd : Any ) ! usd : set of transferred user data
IMPORT Symbols;
BODY

VARIABLES
buf : SUBSET(key × usd);
! Buffer of all data units ever sent

INIT
�= buf = ∅;

ACTIONS

Rq (krq : key; d : usd)
�=

! Transmission of user data d with sequence no. krq
buf ′ = buf ∪ {(krq,d)} ;

In (krq : key; d : usd)
�=

! Delivery of user data d with sequence number krq
( krq = "notsent" ∨ ∀ e ∈ usd :: ((krq,e) /∈ buf) ∨
(krq,d) ∈ buf ) ∧

buf ′ = buf ;
END

Figure 1. Safety process C.

state. The current state is referenced by variables (fi. buf). The next state is refer-
enced by so-called primed variables (fi. buf’). A pair of a current and a next state,
the variables of which fulfill the predicate, is a state transition of the action. Action de-
finitions can contain data parameters. In our example the action Rq corresponds to the
submission of data units. For instance, Rq(2,"data") describes the submission of
the data unit "data" and the assignment of the sequence number 2 to this data unit.
The variable buf in the next state contains the pairs of buf in the actual state and ad-
ditionally the pair (2,"data"). The action In models the delivery of a data unit
d with the sequence number krq. A data unit may be delivered only if it is either a
phantom message (krq = "notsent" ∨ ∀ e ∈ usd :: ((krq,e) /∈ buf))
or if the delivered data is not corrupted during the transmission ((krq,d) ∈ buf).
In addition to the actions defined in the section ACTIONS, a cTLA process may also
perform a so-called stuttering step, the execution of which does not change the process
state.

With respect to the separation of safety and liveness properties (cf. [Alpern and
Schneider, 1]), the process type C models only safety properties. Thus, C tolerates
state sequences, where after a finite number of state changes only stuttering steps are
performed (i.e., the process is suddenly terminated). To rule out terminating state se-
quences, process actions can be attributed with fairness assumptions. After the action
definition section of a process, one adds description constructs of the form WF: In; or
SF: In;. The WF construct expresses that an action (i.e., In) has to be executed weak
fairly. A weak fair action must be performed eventually if it would otherwise be enabled
continuously for an infinite period of time. By the SF construct an action is declared to
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PROCESS XTPService (XTPCap : Nat) ! XTPCap : capacity of
! the service

PROCESSES
. . .;
C : Corruptions (Byte,{ (k,k) | k ∈ Byte })

! No Corruptions of data are allowed
Cap : Capacity (XTPCap) ! Buffersize in number of SDUs
Id : SDUId ! Assignment of unambiguous sequence

! numbers
G : Gaps (0); ! No Gaps in transfered data stream
LIn : LiveIn (. . .); ! Data units are delivered lively
. . .;

ACTIONS

Rq (krq : key; d : Byte)
�=

! Transmission of user data d with seq. no. krq
Id.Rq (krq) ∧ C.Rq (krq, d) ∧ Cap.Rq (krq) ∧
G.stutter ∧ LIn.stutter ∧ ...;

fIn (krq : key; d : Byte)
�= ...;

nIn (krq : key; d : Byte)
�= ...;

END

Figure 2. Service specification XTPService.

be strong fair. It has even to be performed, if it is disabled from time to time. Weak
fair and strong fair actions were introduced in [Alpern and Schneider, 1]. In contrast to
direct liveness properties, these fairness assumptions guarantee not to be contradictory
to the safety properties of a process. Therefore, in TLA [Lamport, 36] and cTLA live-
ness properties are generally modeled by weak and strong fair actions. Moreover, the
processes of the transfer protocol framework either model safety properties or liveness
properties only.

In cTLA, processes are combined to systems similar to Lotos [41]. The processes
interact via synchronous joint actions. The transfer of data between processes is modeled
by action parameters. The variables of a process are private and therefore cannot be
accessed by other processes. Like a process, the system is modeled by a state transition
system as well. The vector of the process variables forms the system states. The system
transitions are described by system actions. In a system action a subset of the processes
executes simultaneously a joint action while the other processes perform a stuttering
step. In [Herrmann, 21] we proved that a cTLA system specification corresponds to a
single process model and in consequence to a canonical TLA formula.

The process XTPService in figure 2 is a typical example of a cTLA system com-
posed from processes. The processes combined to the system are declared in the section
PROCESSES. For instance, the process C (cf. figure 1) is an instance of the process type
Corruptions with the parameter setting (Byte,{ (k,k) | k ∈ Byte }). In the
section ACTIONS of the system description the system actions are declared by con-
junctions of process actions and stuttering steps. In the example XTPService, the local
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process actions Rq of the processes Id, C, and Cap are coupled to the system action Rq,
while the processes R, G, and LIn participate in Rq by stuttering steps.2

As emphasized above the process composition of cTLA has the character of super-
position (cf. [Chandy and Misra, 4; Kurki-Suonio, 34]) which guarantees that a property
fulfilled by a process or a subsystem is also a property of each system which contains
this process or subsystem. In cTLA, superposition is based on the consistent logical con-
junction of processes. The consistency of process compositions with respect to safety
properties follows directly from the syntax of cTLA processes since the state space of
processes is defined by process-private variables only. Therefore safety properties of
different processes cannot interfere with each other.

With regard to liveness, superposition is more subtle due to the joint action cou-
pling. Actions of different processes can participate in the same system action. If one
process action of a system action is not enabled, the other process actions are blocked and
liveness properties of those processes may be violated causing inconsistencies. cTLA
prevents that by employing weaker fairness assumptions than those defined in [Alpern
and Schneider, 1]. The WF and SF constructs of cTLA do only refer to so-called con-
ditional fairness assumptions which require process progress only with respect to state
sequences where a process action as well as the containing system action are enabled.
Therefore blocking joint action peers cannot violate the fairness assumptions of cTLA
processes.

That restriction of fairness to conditional fairness, however, makes it harder to ex-
press absolute liveness properties which are of particular interest for the system design.
For that purpose conditional fairness statements have to be joined with assumptions that
fair actions are not too often blocked by the environment of a process. Those assump-
tions are called environment conditions and have to be proven in the course of liveness
theorem applications.

3. Transfer protocol framework

The transfer protocol framework consists of specification modules and of theorems. The
specification modules are modeled by cTLA process type definitions. They describe ser-
vice constraints, protocol mechanisms, and constraints of a basic transfer medium which
is used by the protocol mechanisms. The specification modules are structured into three
layers: the Service Contraints (SCs) model single properties of a communication ser-
vice. As pointed out in the upper part of figure 3, one can develop service specifications
by composing SC instances. Protocol specifications are described according to the well
known scenario shown in the lower part of figure 3. Like SCs, the Abstract Medium
Constraints (AMCs) model properties of the basic transfer medium. The protocol in-
stances are composed from protocol mechanisms. To simplify the protocol verifica-
tion, the framework provides two different groups of specification modules to describe
protocol mechanisms. The Abstract Protocol Mechanisms (APMs) specify abstractions
of real protocol mechanisms. They model only the essential functions of the protocol

2 Stuttering steps are described by the pseudo-action name stutter.
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Figure 3. Structures of a service and a protocol specification.

mechanisms, but do not attach importance to details of an efficient implementation. In
contrast, the Finite Abstract Protocol Mechanisms (FAPMs) model real protocol mech-
anisms in a quite direct manner. A real data transfer protocol is specified by composing
appropriate FAPMs and AMCs. By the composition of APMs and AMCs, one creates
a more abstract protocol which is used as an intermediate model in order to decompose
the verification into two phases.

The framework theorems correspond to logical implications between cTLA sys-
tems. Due to the structuring of the specification modules into the three layers service,
abstract protocol, and protocol, the theorems are divided into two groups. The SC theo-
rems contribute to proofs that an abstract protocol fulfills a service. They guarantee that
abstract protocol subsystems, modeled by APMs and AMCs, implement single SCs. The
APM theorems are used to prove that a protocol fulfills an abstract protocol. They state
implications between a protocol subsystem combined from FAPMs and AMCs and an
APM.

Figure 4 refers to an SC theorem stating that an abstract protocol subsystem Sys im-
plies the SC LiveIn. Among other APMs and AMCs, Sys contains the APMs SLiveMRq
and RLiveMRq. This implication is only valid if the parameter condition Pars is true.
It ensures that the actual parameters of the process instances of Sys and of LiveIn are
consistent with each other. Furthermore, the whole abstract protocol has to fulfill the
invariant condition EnvCond, which states that the fair actions in Sys are not blocked too
often by processes of the abstract protocol specification. Thus, it is guaranteed that the
conditional fairness assumptions of the actions in Sys fulfill the liveness property to be
modeled by LiveIn. EnvCond has to be checked only if the SC to be fulfilled models a
liveness property. To enable a mechanized check of EnvCond by COAST, all processes
of the framework, which do not violate the environment condition of a theorem, are
listed in the section CORRESPONDS WITH.
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THEOREM LiveIn

LET Pars
�= mla = {(p,q)| skey[spci[p] ] = skey[spci[q] ] ∧

stack[spci[p] ] = stack[spci[q] ] ∧
stcre[spci[p] ] = stcre[spci[q] ] ∧
p ∈ encpdu ∧ q ∈ encpdu} ∧ . . .;

Sys
�= SLiveMRq (pdu, pci, usd, encpdu, spci, skey, sack,

snak, scre, stack, stcre, skk, skn, skm,
usdsize, usdsplit, mcr, rcc) ∧

RLiveARq (pdu, pci, usd, encpdu, spci, skey, sack,
snak, scre, stack, stcre, skk, skn, skm,
usdsize, rcu, rcc, ma, mr, mo) ∧

. . . ∧ CCLiveIn;

EnvCond
�=

∀ krq,p,kd : Enabled(SLiveMRq.fMRq(krq,p,kd)) ⇒
(krq,p,kd) ∈ Sys.efMRq ∧

∀ p,kd : Enabled(RLiveARq.fARq(p,kd)) ⇒
(p,kd) ∈ Sys.efARq ∧ . . .;

IN Pars ∧ Sys ∧ [ ] EnvCond ⇒ LiveIn (usd, 0, tg, c, {});

CORRESPONDS WITH

Process
�= SBufferKey (pdu, pci, usd, . . .);

Process
�= SBufferUsd (pdu, pci, usd, skk, . . .);

. . .;

END

Figure 4. SC theorem to prove the SC LiveIn.

At this moment, the framework consists of 133 specification modules (28 SCs,
44 APMs, 14 AMCs, and 47 FAPMs) and 165 theorems (31 SC theorems and 134 APM
theorems).

4. COAST

The selection and arrangement of suitable framework theorems to perform proto-
col verifications is supported by the tool COAST (Consistency of a specification in
cTLA+) [Drögehorn, 10]. The input files of COAST are specifications of a more de-
tailed system (e.g., a protocol specification) and of a more abstract system (e.g., a service
specification) which both are modeled by cTLA process compositions (cf. figure 2). Fur-
thermore, COAST has access to a database containing theorems in the syntax described
in figure 4. By selecting theorems from the database and checking that the specifications
are composed and parametrized according to the conditions of the theorem, COAST
verifies that the detailed specification implies the abstract specification. This is equiva-
lent to proving that the detailed system correctly implements the abstract system in the
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Figure 5. Elements of the tool COAST.

sense, that the detailed system contains all of the mandatory properties of the abstract
system.

Due to the subdivision of the framework theorems into three layers the tool has to
be applied twice to perform a complete protocol proof. In one phase COAST checks
that an abstract protocol fulfills a service. The protocol developer provides the abstract
protocol specification as the detailed system, the service specification as the abstract
system, and the database of all SC theorems to COAST. In the other phase COAST
proves that a protocol fulfills the abstract protocol. In this case the protocol forms the
detailed system and the abstract protocol acts as the abstract system. COAST uses the
database of the APM theorems.

COAST performs a protocol proof in four sequent steps (cf. figure 5). If a check
cannot be completed successfully, the tool terminates and reports an error message.

In the first check suitable theorems are selected from the database. As explained
in section 3, a theorem guarantees that the subsystem Sys of the detailed system implies
a process of the abstract system. COAST identifies a theorem for each process of the
abstract system. The theorem has to contain the process on the right side of the impli-
cation. Thereafter, the tool checks if the processes of the subsystem Sys in the theorem
are contained in the detailed system. If COAST cannot find a suitable theorem for each
process of the coarse-grained specification, the proof will be aborted.

If the process on the right side of a theorem models a liveness property, COAST
checks in a second step whether the detailed system contains processes which might
spoil the liveness of the subsystem Sys and therefore violate the invariant condition
EnvCond of the theorem. This task is simple since all processes of the framework, which
are compatible to Sys, are listed in the section CORRESPONDS WITH of the theorem
(cf. figure 4). Thus, COAST checks if the detailed system contains processes which are
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not contained in this list. If not all processes are compatible, the theorem is rejected and
COAST jumps back to the first step selecting a new theorem from the database.

The last two steps deal with the consistency of the actual parameters of the
processes. The framework assumes that these actual parameters of different process in-
stances are represented by syntactically equal terms, which substitute equally named
formal process type parameters. The tool checks this condition in the third step. If it de-
tects syntactically different parameter settings, it adds corresponding proof obligations
to the fourth step.

Finally, the fourth step is devoted to the proof of the condition Pars of the theorem.
Pars ensures the logical consistency of the parameter settings and is represented by a
first-order logic formula. COAST translates Pars (and possibly the additional obligations
of the third step) into the input syntax of a frontend tool [Geist, 16] for the automated
theorem prover OTTER [McCune, 43]. If OTTER verifies Pars and the additional oblig-
ations, the protocol verification is completed successfully. If OTTER fails to perform a
proof, the user of COAST has to decide if the formula is false or if the proof was too dif-
ficult or too extensive to be proved without interactive support. Then one can structure
the proof and supply additional lemmas to OTTER. Since, however, Pars is very sim-
ple in the most theorems, OTTER can usually prove these formulas without any further
support. As an alternative to OTTER, one can also use the prover MACE [McCune, 42]
which searches small finite models of the formula.

5. Example

For clarification we will outline the proof of the Xpress Transfer Protocol XTP [51,52].
To support the data transfer requirements of different distributed applications, XTP con-
sists of a broad spectrum of protocol functions (cf. [Doeringer et al., 9; La Porta and
Schwartz, 37]) which are mostly asynchronous to each other. Thus, various combina-
tions of protocol functions are possible. The Transfer Protocol Framework supports this
modularity directly. In [Herrmann and Krumm, 25] we introduced the formal specifi-
cation and verification of XTP. There, the proofs were carried out manually by appli-
cation of suitable framework theorems. Altogether we needed only three weeks for the
specification and verification. However, by application of COAST we could reduce the
verification time further.

As outlined in [Herrmann and Krumm, 25], we design a service specification, an
abstract protocol specification, and a protocol specification by parametrizing and com-
posing framework processes, first. The service specification XTPService is listed in fig-
ure 2. SCs of the framework (e.g., SDUId, Corruptions, Gaps, LiveIn) are instantiated
and composed according to the desired properties of the service. Since, for example,
the service does not tolerate gaps in the stream of delivered data, the specification con-
tains the process instance G of the SC Gaps. The process parameter tg of Gaps, which
describes the maximum number of gaps in the stream of delivered data, is set to 0.
Thus, gaps are not tolerated at all. The protocol specification XTPProtocol is composed
from FAPMs, which model the protocol mechanisms of XTP, and AMCs describing the
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PROCESS XTPProtocolAbs
PROCESSES

! APMs : Protocol mechanisms with infinite variables
SBK : SBufferKey ! Protocol mechanism modeling the handling

! of sequence numbers in the transmitter
! entity

(XTPpdu, ! format of the XTP pdu (modeled by a
! cTLA record)

XTPpci, ! format of the XTP protocol control
! information

Byte, ! XTP provides bytewise data transfer
. . .);

SBU : SBufferUsd ! Protocol mechanism modeling the store of
! data in the transmitter entity

(XTPpdu, ! format of the XTP pdu (modeled by a
! cTLA record)

Byte, ! XTP provides bytewise data transfer
. . .);

. . .;
ACTIONS

Rq (krq : key; d : usd)
�=

! Transmission of user data d with sequence number krq to
! the service provider
SBK.Rq (krq,d) ∧ RBK.stutter ∧ SBU.Rq (krq,d) ∧
RBU.stutter ∧ RG.stutter ∧ RR.stutter ∧ RD.stutter ∧
RP.stutter ∧ . . .;

. . .;
END

Figure 6. Parametrized abstract protocol specification XTPProtocolAbs.

constraints of the basic service. In figure 6 the abstract protocol specification XTPPro-
tocolAbs is sketched. It models the protocol mechanisms of XTP in a more abstract way
than XTPProtocol and is composed from APMs (e.g., SLiveMRq) and AMCs.

Below, we sketch the proof that XTPProtocolAbs fulfills XTPService. COAST is
provided with these specifications and the database of the SC theorems. For instance,
the theorems listed in figures 4 and 7 are contained in this database.

COAST performs the four proof steps outlined in section 4. First, it selects the first
process of the service specification. In the example, this is the SC Corruptions guaran-
teeing that corrupted data will not be delivered to the service user. In order to prove this
SC, COAST selects the theorem listed in figure 7 from the database. In the first step
COAST checks that all processes of the subsystem Sys are also contained in the spec-
ification XTPProtocolAbs. Since that is true, the tool completes this step successfully
(output TESTING Mechanisms in figure 8).
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THEOREM Corruptions

LET Pars
�= mtc ⊆

{(p,q) | q /∈ encpdu ∨
( skey[spci[p] ] = skey[spci[q] ] ∧

∀ n ∈ skey[spci[p] ] :
(susd[p,n],susd[q,n]) ∈ tc) ) } ∧

∀ l,m ∈ usd ∀ n ∈ {0, ..., usdsize[l] - 1}:
(usdsplit[l,n],usdsplit[m,n]) ∈ tc ⇒ (l,m) ∈ tc;

Sys
�= SBufferKey (pdu, pci, usd, encpdu, spci, skey,

skk, skn, skm, usdsize, mb) ∧
SBufferUsd (pdu, usd, susd, skk, skn, usdsize,

usdsplit) ∧
RBufferKey (pdu, pci, usd, encpdu, spci, skey,

skk, skn, skm, usdsize, rcu, rcc) ∧
RBufferUsd (pdu, usd, susd, skk, skn, usdsize,

usdsplit) ∧
MSDUId ∧
MCorruptions (pdu, mtc) ∧
MPhantoms (pdu,encpdu) ∧
CCCorruptions;

IN Pars ∧ Sys ⇒ Corruptions(usd, tc)

CORRESPONDS WITH
. . .;

END

Figure 7. SC theorem to prove the SC corruptions.

* START THEOREM-CHECK !!!! *
Checking Service_Element: Corruptions
- Trying the 1. Theorem for: Corruptions
TESTING Mechanisms:
→ OK
TESTING Correspondings:
→ NOT NECESSARY
TESTING Parameters:
→ OK

→ One or more theorems has been tested correctly for this
Service_Element !!!!!

. . .

* END of CHECK !!!! *

Figure 8. Output message of COAST.
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Since Corruptions does not describe a liveness property, the liveness of Sys cannot
be spoiled by its environment. Thus, COAST omits the second proof step.

In the third step COAST checks, that formal parameters in the theorem containing
the same name are replaced by identical defined variables or identical values. For ex-
ample, the parameters pdu of the processes SBufferKey and SBufferUsd in Sys are both
replaced by the value XTPpdu (cf. figure 6). COAST finished this check successfully,
too (output TESTING Parameters in figure 8).

In the forth step the condition Pars of the theorem Corruptions is checked.
First, the formal parameters of Pars are replaced according to the instantiations of the
processes in the specifications XTPService and XTPProcotolAbs. Thereafter COAST
translates the formula into the syntax of the OTTER frontend. Figure 9 depicts the
translation of the first conjunct of Pars in the theorem. In the part FORMULAS the
name form_Corruptions2_1 is assigned to the first conjunct of Pars. The proof script
guiding OTTER is defined in the part THEOREM. OTTER shall prove the formula
form_Corruptions2_1 by contradiction assuming the already proven formulas mtc_pred,
etc.

Likewise, COAST performs the checks for each process of XTPService and creates
OTTER proof scripts. Finally, OTTER verifies the formulas Pars of all selected theorems
by application of the proof scripts. Since for each process of XTPService at least one
theorem was identified which passes the checks by COAST and since the OTTER proofs
succeeded, the verification that XTPProtocolAbs fulfills XTPService is successful.

COAST selected 33 theorems of the database of SC theorems which passed the
first proof step. Since the abstract protocol specification of XTP is compatible to these
theorems with respect to liveness properties, they passed the second step as well. The
theorems passed also the third step, since the actual parameters were always replaced
by syntactically equal terms. OTTER could prove the Pars condition of 25 theorems
directly. Eight theorems had to be enhanced with additional data-definitions in order to
be proven by OTTER. By this support, OTTER could prove another four theorems. The

MODULE Corruptions2_equal
FORMULAS

form_Corruptions2_1
�=

mtc ⊆ {(p,q) | q /∈ encpdu ∨
( skey[spci[p] ] = skey[spci[q] ] :

(susd[p,n],susd[q,n]) ∈ tc) };

THEOREM Test_form_Corruptions2_1
<1>{1}ASSUME mtc_pred, q_pred, p_pred, encpdu_pred, skey_pred,

spci_pred, susd_pred, n_pred, tc_pred
PROVE form_Corruptions2_1
QED BY CONTRADICTION;

END Corruptions2_equal

Figure 9. Part of the generated OTTER formula for the SC-theorem Corruptions.
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remaining four OTTER theorem proofs had to be supplied by some simple intermediate
lemmata. These lemmata, however, could be designed easily.

For the proof that the protocol system fulfills the abstract protocol system, COAST
selected 52 theorems of the 134 theorems of the database of APM theorems. Due to
the similarity of the protocol specification XTPProtocol and the abstract protocol spec-
ification XTPProtocolAbs, COAST and OTTER performed these proofs without further
support by the user. Altogether, the complete proof that the protocol specification XTP-
Protocol fulfills XTPService could be performed within three hours.

6. Conclusion

With the help of the XTP example we outlined the concept of the transfer protocol
framework and, in particular, the verification tool COAST. Besides XTP and some
simpler sliding window protocols, we applied the framework to specify and prove
the complex high-speed protocol MSP [La Porta and Schwartz, 38], too, which could
be examined also with a remarkable few expense of work (cf. [Hinz, 28]). The
framework can be accessed via WWW (http://ls4-www.informatik.uni-
dortmund.de/RVS/P-TPM).

Further work meanwhile expanded the specification technique cTLA in order to
rise its acceptance in industrial protocol development. On the one hand, cTLA was
extended to specify real-time properties and continuous behaviour [Herrmann et al., 22].
This facilitates the formal specification and verification of distributed real-time systems.
In particular, cTLA and its extensions are already applied to control systems for hybrid
chemical systems [Hermann and Krumm, 27]. The extensions, however, can be utilized
for the modeling of quality aspects in communication protocols as well (fi. modeling the
transmission of multimedia data [Graw et al., 18]).

The approach, moreover, was used to the translation of cTLA system specifica-
tions into the hardware description language VHDL (cf. [Lipsett et al., 40]). By means
of design compilers (fi. Synopsis) VHDL hardware module descriptions can be trans-
formed automatically into hardware circuits. In this field we are using cTLA as a system-
level description language with the ability of proving the specification against the ser-
vice specification and other constraints. The objective of the work is the mechanical
transformation of already proven descriptions into hardware circuits in order to reduce
the needs for expensive functional circuit tests and simulations [Drögehorn et al., 11;
Hümmer and Geisselhardt, 31]. This work was partly funded by the postgraduate re-
search programme CINEMA of the German research foundation DFG.
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