
Telecommunication Systems 9 (1998) 207–221 207

Modular specification and verification of XTP

Peter Herrmann and Heiko Krumm

Department of Computer Science, University of Dortmund, D-44221 Dortmund, Germany
E-mail: {herrmann,krumm}@ls4.informatik.uni-dortmund.de

Received January 1997; in final form February 1998

The transfer protocol framework supports the formal specification and verification of data
transfer protocols. It consists of generic specification modules and theorems. Compositions
of specification module instances result in well-structured specifications which describe a
protocol, the medium used, and the service provided by means of TLA formulas. The proto-
col verification is based on the proof of the logical implication between protocol and service
specification. Due to the modular structuring of the specifications, this proof can be decom-
posed into a set of subimplications which correspond directly to theorems of the framework.
Therefore, the development of formal specifications as well as the protocol verification can
be reduced to the instantiation and arrangement of framework elements. The flexibility of
the framework opens its application for a broad spectrum of data transfer protocols. We
outline the principles of the framework and concentrate on its application to the high-speed
transfer protocol XTP. Because of the framework support, the formal modeling and analysis
of this modern and function-rich protocol was manageable and identifies deficiencies of the
current protocol definition clearly.

1. Introduction

The formal verification of complex real-life protocols is a time-consuming task
in general. Very often suitable formal specifications of the protocol, of the service
provided, and of the service used do not exist and have to be developed from informal
descriptions. Furthermore, considerable work is necessary to perform the verification
itself, even if automated tools are applied. Mostly fully automated reachability-analysis
and model-checking tools run out of memory due to the large number of reachable
states. Thus, simplifications and abstractions have to be developed in order to reduce
the set of relevant states. If theorem-proving-based verification methods are used,
practitioners have carefully to design the outlines, strategies, and lemmas (particularly
invariants) of complex deduction processes. Therefore, many approaches exist which
concentrate on the enhancement of tools and methods.

In addition to methods and tools, a third type of support is possible: domain-
specific frameworks can be provided, which document the results of general investi-
gations of the principal objects and interdependences of specific application domains.
We analyzed the domain of data transfer protocols in order to identify the relevant

 J.C. Baltzer AG, Science Publishers



208 P. Herrmann, H. Krumm / Modular specification and verification of XTP

protocol mechanisms, service properties, and logical relationships developing libraries
of re-usable specification modules and theorems. The specification modules facilitate
the development of formal specifications substantially. Protocol and service specifi-
cations can be composed of instances of library modules. Moreover, the structure of
these compositions already outlines the structure of proofs. The proof that a protocol
as a whole provides for a certain service can be decomposed into a series of proofs,
which consider that certain service properties are provided by certain subsystems of
the protocol. Last, these subsystem proofs can be infered directly from instances of
the theorems. Since the theorems are already proven, the developer of a particular
protocol has to ensure only, that subsystems, proof goals, and theorems are config-
ured consistently. We call this collection of generic specification modules “Transfer
Protocol Framework” since it supports the formal modeling and verification of data
transfer protocols in general. While it may advantageously be applied to traditional
link, network, and transport layer protocols, it is of special interest for the design
of modern high-speed communication protocols which focus on efficient and flexible
combinations of transfer protocol mechanisms (e.g., XTP [15,19], MSP [9,11]).

Due to the framework support, manual and well-understood proofs of complex
(real-life) protocols are possible. The approach, however, does not exclude the use of
tools. Specialized tool support is provided by a theorem manager which facilitates the
selection of theorems and performs the necessary consistency checks [3]. Moreover,
the theorem manager has an interface to the theorem prover OTTER [14] which is
used to verify predicate-logic-based obligations of consistency checks.

The complete transfer protocol framework is available via WWW (http://
ls4-www.informatik.uni-dortmund.de/RVS/P-TPM). A detailed descrip-
tion is contained in [4]. The principles are outlined in [6].

The specification module and theorems of the framework are based on TLA [8],
a linear-time temporal logic which is primarily devoted to the description of state
transition systems and the reasoning with their safety and liveness properties. We
apply a special compositional TLA specification style which we call cTLA [5,13]. In
particular, cTLA supports the structuring of systems into concurrent and interacting
processes.

The paper gives a short introduction into the transfer protocol framework and the
high-speed transfer protocol XTP [15,19] first. Thereafter it reports on the application
of the framework which supports a manageable analysis of the unicast services of XTP.
In more detail, the service provided by XTP, the protocol XTP, and the service used
by XTP have been described formally by compositions of instances of specification
modules of the framework. The protocol verification is performed by combining
theorems of the framework to form the proof of the overall implication of protocol and
service used implying that the appropriate services are provided. Due to the framework
support, the tasks of formal specification and verification could be performed efficiently
within three weeks. The verification showed XTP to be correct with respect to our
formal specifications. Moreover, we identified some deficiencies of the (informal) XTP
definition which can result in faulty implementations.



P. Herrmann, H. Krumm / Modular specification and verification of XTP 209

2. The transfer protocol framework

The transfer protocol framework is a collection of generic specification modules
and theorems supporting the specification and verification of transfer protocols by re-
usable elements. The specification elements are modular definitions of process types.
The verification elements are implications between process systems and processes.
Process types and theorems are defined using cTLA [5,13]. This TLA style supports
the composition of systems from resource-oriented processes as well as from constraint-
oriented processes (cf. [17]). As in LOTOS [7] or in I/O automata [12], the processes
of a system interact via joint actions.

Primarily, the framework supports the specification of the service provided, the
specification of the service used, and the specification of the protocol. The service
provided is described by a composition of service constraint processes (SCs), the
service used is described by a composition of medium constraint processes (MCs), and
the protocol is described by a composition of protocol mechanism processes (PMs).
The protocol verification proves that the conjunction of PMs and MCs implies the set of
SCs. This proof can be decomposed into proofs of PM/MC-subsystems implying single

Figure 1. Framework and layers.



210 P. Herrmann, H. Krumm / Modular specification and verification of XTP

SCs. The framework should support these proofs by the provision of corresponding
theorems.

The framework, however, does not provide for direct implications between
PM/MC-subsystems and SCs since a large set of specialized theorems would be nec-
essary to cover the wide variety of protocol mechanism combinations. Actually, the
gap between protocol and service is bridged by intermediate abstractions of protocol
mechanisms and medium constraints which are grouped into layers. Figure 1 gives
an overview of the layers of the framework. At the top of the framework are process
types which correspond to SCs. At the bottom, the framework supplies finite abstract
protocol mechanisms (FAPMs) and abstract medium constraints (AMCs). They consist
of generic process types, instantiations of which directly correspond to PMs and MCs.
In the middle, abstract protocol mechanisms (APMs) form abstractions of FAPMs.
The theorems of the framework are implications between subsystems of a layer and
processes of the next higher layer. Thus, the implications of a protocol verification
can be proven by transitively combining theorems.

Presently, the framework consists of 28 SCs, 44 APMs, 14 AMCs, and 47 FAPMs.
There are 44 theorems linking FAPM/AMC systems with APMs. 31 theorem link
APM/AMC systems with SCs.

3. XTP

The high-speed transport protocol XTP (eXpress Transfer Protocol) [15,19] pro-
vides a broad spectrum of transport services supporting the data transfer requirements
of various distributed applications. Therefore it is designed in a modular way. It con-
sists of protocol functions (cf. [2,10]) which are mostly asynchronous to each other.
This facilitates the use of concurrent systems (e.g., transputers) for implementation
(cf. [1]). Furthermore, XTP facilitates the dynamic adaption of protocol functions de-
pending on the particular needs of the protocol user (cf. [18]), who can select different
techniques for connection management, error control, and flow control. Virtual uni-
cast and multicast connections are supported as well as datagram-oriented data transfer.
While connections are opened implicitly without confirmations in general, the user can
select different closing modes including implicit disconnects, disconnects caused by
timeouts, and graceful releases. Detection of corrupted user data can be switched off
as well as the remedy for lost data. Further, different modes for triggering error reports
and the repetition of data transfer are available. XTP is the first protocol offering a
twofold flow control. End-to-end flow control is supported by a sliding window credit
mechanism while the flow control of the basic service is realized by interpacket gaps.
Both flow control mechanisms can be switched off, too.

The protocol data formats of XTP facilitate hardware realizations. In the current
version 4.0 [19] an XTP packet consists of a packet header with a fixed structure and
length (32 bytes) and a payload segment, the structure and length of which depend on
the packet type. The header contains relevant information, i.e., a connection identifier,
connection mode data, a sequence number of the data unit to be sent next, a sequence



P. Herrmann, H. Krumm / Modular specification and verification of XTP 211

number of a connection mode negotiation handshake, a packet priority indicator, a
frame check sequence, and a packet length indicator. Seven different types of XTP
packets are defined. The control of a connection is provided by three packet types
which are used to acknowledge delivered data, to report transfer errors, and to negotiate
a new mode of the connection. The other four types support the transfer of information.
Packet types are available to open new connections (connection packets may contain
user data, too), to join an existing multicast connection, to send user data, and to report
severe protocol errors.

4. Arrangement of XTP specifications and verifications

The formal specification of XTP had to consider the informal XTP descrip-
tion [19], which does not contain descriptions of the communication service supplied.
In the first step we examined the XTP description. We identified service constraints
and modeled them by instantiations of SCs of the framework. Altogether, 27 SC in-
stances were derived, the composition of which forms the service specification. In the
same way we developed the protocol specification by arranging and composing 60 Fi-
nite Abstract Protocol Mechanisms (FAPMs) in accordance with the XTP description.
Further, we designed an intermediate abstract protocol specification by arranging and
composing 58 Abstract Protocol Mechanisms (APMs). In the third step we proved
that the protocol specification implements the service specification. We structured this
proof into 85 lemmas. By means of 58 lemmas we proved that each APM of the in-
termediate specification is fulfilled by a subsystem of the protocol specification. Each
of the remaining 27 lemmas verifies that an SC is implied by a subsystem of APMs.
The verifications of the lemmas were performed utilizing theorems of the framework
which could easily be selected depending on the structure and the parametrization of the
subsystems. Further, we proved the consistency of the different process compositions.

The process types forming the XTP protocol specification are arranged and com-
posed according to figure 2. The protocol specification consists of an infinite set of
descriptions modeling single connections. A connection description is composed of
specifications of various data channels, each modeling a different quality of service,
and of a connection management specification. The data channels are specified by the
data transfer FAPMs and by Abstract Media Constraints (AMCs). The data transfer
FAPMs describe protocol functions which are necessary to provide correct data transfer
between distributed sites.

The connection management consists of two parts modeling the transfer of sig-
nals and the coordination of the channels. The transfer of signals is described by
a set of signaling channels which are modeled by data transfer FAPMs and AMCs
as well. Since XTP handles the signal transfer by means of own acknowledgement
and remedy mechanisms, we had to separate the modeling of the signal transfer from
that of the data transfer and therefore introduced independent signaling channels. The
protocol functions necessary to coordinate the signaling and data channels in the dif-



212 P. Herrmann, H. Krumm / Modular specification and verification of XTP

Figure 2. Organization of a protocol specification.

ferent connection states are specified by a set of so-called intraconnection coordination
FAPMs.

Since during the lifetime of the XTP protocol an arbitrary number of connections
may be used, the protocol specification contains an infinite number of connection
specification instances. The interaction of different connections is modeled by a third
group of FAPMs, the interconnection coordination FAPMs.

5. Service specification

As an example, we will sketch the arrangement of the SCs regarding the transfer
of signals used by the connection management. Since the transfer requirements vary
within different service elements, we defined four different channel specifications.
The channels ‘First’ and ‘Last’ are used to transmit the first and last signal of
a connection only. Intermediate signals (e.g., negotiations to change the quality of
the data channels) are transmitted via the channel ‘Active’. The signal transfering
a connection abort triggered by the protocol entities is transfered via the channel
‘ProviderAbort’. Table 1 lists the SCs of which the four channel specifications
are composed.



P. Herrmann, H. Krumm / Modular specification and verification of XTP 213

Table 1
SCs to model service specifications of signal transfer channels.

SC ‘First’ ‘Active’ ‘Last’ ‘ProviderAbort’

SDUId ⋆ ⋆ ⋆

SDUIdSynch ⋆

Corruptions ⋆ ⋆

CorruptionsSynch ⋆

Duplicates ⋆ ⋆ ⋆

Reorderings ⋆ ⋆ ⋆

Phantoms ⋆ ⋆ ⋆ ⋆

Capacity ⋆ ⋆ ⋆

CapacitySynch ⋆

ShowDeliverySynch ⋆

LiveIn ⋆

Figure 3. The SC Corruptions.

The service constraints SDUId and SDUIdSynch are basic constructs supplying
the ordered stream of signal data. The SCs Corruptions, CorruptionsSynch, Duplicates,
Reorderings and Phantoms model certain classes of data transfer errors. The capacity
of the channels is described by Capacity and CapacitySynch. The SC ShowDelivery-
Synch specifies the occurrence of implicit data confirmations. LiveIn guarantees that



214 P. Herrmann, H. Krumm / Modular specification and verification of XTP

Figure 4. The XTP service constraint XTPCorruptions.

transmitted data will be delivered eventually. The specifications of the four channels
are derived by composing subsets of these SCs (see table 1).

In figure 3, we outline the arrangement of the SC Corruptions, which models the
restriction of corrupted data units or signals. The type usd denotes the set of data
units or signals to be transfered. During the data transfer each data unit is accompanied
by a unique sequence number describing the transmission order. key identifies the set
of available sequence numbers. Since in service specifications aspects of distribution
are transparent, Corruptions uses only one global set variable buf, which models the
set of data transfered by the service.

The transmission of new data units is modeled by the action Rq. This ac-
tion contains two action parameters d and krq describing the value and the se-
quence number of the sent data unit. Rq models the storage of the data unit in the
buffer buf.

The delivery of a data unit to the receiver is modeled by the action In. This
action may only be executed if the delivered data unit, identified also by krq and
d, either is a phantom (represented by the special sequence number ‘notsent’) or
corresponds with a data unit in buf the value of which is related to the delivered
unit in accordance with the relation tc. By tc classes of tolerable corruptions are
described. Thus, the SC states that delivered data are either phantoms or are at most
corrupted within the limits of tc.

The SC Corruptions is adapted to the XTP service constraint XTPCorruptions
by the parametrization listed in figure 4. The formal parameter usd describes the set
of data units to be transmitted. It is instantiated by the type sigd of XTP signals.
sigd is a record containing a service element identifier and various quality of service
parameters. Since corruptions of signals cannot be tolerated at all, tc is replaced by
the identity relation {(x,x) | x ∈ sigd}.



P. Herrmann, H. Krumm / Modular specification and verification of XTP 215

6. Protocol specification

Again, we will use specifications of the signal transfer channels to outline the
arrangement of the XTP protocol mechanism specifications. The FAPMs used to
model the protocol mechanisms realizing the four channels ‘First’, ‘Active’,
‘Last’, and ‘ProviderAbort’ are described in table 2. The FAPMs SBuffer-
Key, SBufferUsd, RBufferKey, and RBufferUsd model the handling of sequence num-
bers and the buffering of user data in the transmitter and receiver protocol entities.
The notification of the data transmitter by the receiver about data received properly
or corrupted is described by the FAPMs SAcknowledge, SReject, RAcknowledge, and
RReject. The remedy for data duplications, reorderings, and phantoms by refusing
the delivery of defective data units is modeled by RDuplicates, RReorderings, and
RPhantoms. SSendInOrder is used to describe the transmission of data in a cer-
tain order. The notification of the transmitter about data transfered properly is mod-
eled by the FAPM SShowDelivery while SSynchronize is used to adapt different se-
quence number assignment methods. The FAPMs SLiveMRq, RLiveARq, and RLiveIn
guarantee that data units are eventually transmitted, notified, and delivered. These
FAPMs are composed in order to specify the four signaling channel classes of XTP
(table 2).

As an example we sketch the parametrization of the FAPM SBufferKey (figure 5)
for the channels ‘First’, ‘Active’, and ‘Last’, which models the handling of
sequence numbers of user data and signaling information and the segmentation and
blocking of data in the transmitter. The set variable sbk models the buffer of sequence

Table 2
FAPMs to model protocol specifications of signal transfer channels.

FAPM ‘First’ ‘Active’ ‘Last’ ‘ProviderAbort’

SBufferKey ⋆ ⋆ ⋆ ⋆

RBufferKey ⋆ ⋆ ⋆ ⋆

SBufferUsd ⋆ ⋆ ⋆

RBufferUsd ⋆ ⋆ ⋆

SAcknowledge ⋆ ⋆

RAcknowledge ⋆ ⋆

SReject ⋆ ⋆

RReject ⋆ ⋆

RDuplicates ⋆ ⋆ ⋆

RReorderings ⋆ ⋆ ⋆

RPhantoms ⋆ ⋆ ⋆

SSendInOrder ⋆ ⋆ ⋆

SShowDelivery ⋆

SSynchronize ⋆

SLiveMRq ⋆

RLiveARq ⋆

RLiveIn ⋆



216 P. Herrmann, H. Krumm / Modular specification and verification of XTP

numbers of data segments in the transmitter buffer. cRq contains the sequence number
which will be assigned to the data unit to be sent next. fkey is the finite set of data
unit sequence numbers.

The action Rq models a data transfer request. A data unit d, sent by the service
user, is provided with the sequence number contained in cRq. cRq is incremented.
The segmentation of user data is modeled by the functions skk, skn, skm, and
usdsize. The sequence numbers of the segments are added to the set sbk. The
old sequence number (cRq + 1 − ms) mod ws, which is no longer relevant for the
transmission, is deleted. The action MRq models the transfer request of a Protocol Data
Unit (PDU) to the medium. The action parameter p is the PDU transmitted by the
transfer request. The parameter krq is a set of sequence numbers which are contained
in the PDU. A PDU can contain only data units, the sequence numbers of which are
elements of sbk. The action MRq states further that the frame check sequence of p
must be initiated properly and a block may contain at most mb segments.

In dependency of the channels ‘First’, ‘Active’, and ‘Last’ the process
type parameters of SBufferKey are instantiated to develop the XTP protocol mechanism
specification. pdu and pci, which describe the sets of PDUs and their Protocol
Control Information (PCI), are replaced by the datatype XTPpdu defined previously
which models the structure of the PDUs and PCIs in XTP. As in the SC Corruptions
(see section 5) the parameter usd is replaced by the signal type sigd. Since, for
simplicity, we model PDUs and their PCIs by the same data type, the function spci
describing the position of the PCI in a PDU is instantiated by the identity function.
By the parameter encpdu frame checking is modeled. It refers to the set of PDUs
which pass a frame check. Due to the corresponding XTP protocol functions this set
contains all PDUs, the frame check sequence of which are identical to the result of
the XTP frame checking function.

The instantiation of the parameter skey modeling the set of sequence numbers
of signaling data transfered in the PDU is a little more sophisticated and depends on
the channel type. In the type ‘Active’ it is replaced by the sequence number of
a connection mode negotiation handshake which is a structure in the PDU header.
Since in channels of the other types at most one PDU is sent (except for retransmis-
sions), 0 is the only sequence number used, since that is the sequence number which
is always assigned to the first data unit transmitted. XTP uses four bytes to repre-
sent sequence numbers of connection mode negotiations. Thus, we set the parameter
ir denoting the total number of sequence numbers to 232. In the sliding window
protocol mechanism with selective repeat, one can simultaneously use all but one of
the available sequence numbers (cf. [16]). Therefore the parameter ms specifying
the number of active sequence numbers is set to 232 − 1. Finally, the parameter mb
specifies the maximum number of data units transfered in a PDU. Its value depends
on the particular protocol implementation and on the properties of the basic service
used.



P. Herrmann, H. Krumm / Modular specification and verification of XTP 217

7. Verification

After creating service and protocol specifications we have to prove that the proto-
col implements the service. This task is performed utilizing theorems of the framework.
As explained in section 2, the refinement proofs are performed in two steps. First,
we prove that the service specification is implemented by an intermediate specification
consisting of Abstract Protocol Mechanisms (APMs). Second, we verify the refine-
ment between the protocol specification and the intermediate specification. Therefore,
we have to create the intermediate specification by arranging APMs. This task is rel-
atively easy since the APMs use process type parameters similar to the FAPMs. For
example, the parameters of the APM Corruptions are instantiated by the same values
as the FAPM (figure 5) except for mseg and is, which are not used in the APM.

We will now outline the proof that the protocol implies the service specifi-
cation of the signaling channels which is formed by SCs (table 1). We have to
prove that the SCs of all four channel classes ‘First’, ‘Active’, ‘Last’, and
‘ProviderAbort’ are implied by subsystems of the intermediate specification. We
sketch the proof of the SC Corruptions (figure 3). This proof is performed using the
theorem shown in figure 6. The theorem states that a subsystem Sys of APM processes
SBufferKey, SBufferUsd, RBufferKey, and RBufferUsd, as well as the AMCs MSDUId,
MCorruptions, and MPhantoms implies the service constraint Corruptions. The sub-
system Sys is defined by a conjunction of process instances and a coupling constraint
CCCorruptions. CCCorruptions describes which actions of the processes of Sys are
performed jointly. The implication depends on the consistent parametrizations of the
APMs, AMCs, and the SC which is described by the condition Pars.

For the application of the theorem we have to check first that Sys is a subsystem
of our intermediate system, i.e., each process of Sys has to occur in the intermediate
system. Furthermore, the coupling constraint CCCorruptions has to be implied by the
intermediate system.

Second, we have to check that the parameters of the process instances of the
intermediate system meet the parameter condition Pars of the theorem. In our ex-
ample, the parameter mtc of the AMC MCorruptions is instantiated by the set
{(p,q) | p /∈ encpdu ∨ (p = q)}, guaranteeing that corruptions can be detected
by the receiver entity. Thus, the instantiation of Pars is

{(p,q) | p /∈ encpdu ∨ (p = q)}

⊆ {(p,q) | p /∈ encpdu ∨ (skey[spci[p]] = skey[spci[q]]

∧ ∀n ∈ skey[spci[p]]: susd[p,n] = susd[q,n])}

which can be proved easily.
Since the theorem is already proven, these checks are sufficient to infer that the

SC Corruptions is implemented by the subsystem Sys of the intermediate specification
consisting of APMs and AMCs. In proofs of liveness processes (e.g., the SC LiveIn),



218 P. Herrmann, H. Krumm / Modular specification and verification of XTP

Figure 5. The FAPM SBufferKey (for the sake of clarity we omitted mechanisms to segment data units).

a fourth check has to be performed to guarantee that the intermediate specification
does not consist of APMs or AMCs spoiling the liveness of the subsystem Sys. This
check profits from the fact that protocol and service specifications are composed from
framework processes. For all processes of the framework we already analyzed and



P. Herrmann, H. Krumm / Modular specification and verification of XTP 219

Figure 6. A theorem to prove the SC Corruptions.

documented, which processes might block others and therefore spoil the liveness of
Sys. Thus, the check is reduced to the comparison of the process types of the protocol
specification with the list of the incompatible process types of the liveness theorem.
The theorem manager [3] performs this task automatically.

In this way the refinements of all SCs of the four channels were verified. Since
all SCs of the service specification are implemented by the intermediate specification,
we can complete the proof. We simply have to examine that the coupling constraints
of the service specification and the intermediate specification are consistent. This
is guaranteed by the structure of the framework processes. The second proof step,
verifying that the XTP protocol specifications refine the intermediate specifications,
was performed analogously.



220 P. Herrmann, H. Krumm / Modular specification and verification of XTP

8. Summary of the XTP specification and proof

By developing specifications of the XTP service and protocol and performing the
refinement proof, we checked the functional correctness of the XTP unicast functions.
All in all, we can state that the protocol mechanisms of XTP provide the service
specified by the service specification (section 5). Nevertheless, we detected some
ambiguities in the informal description that might lead to defective implementations.
In particular, the functionality of the mechanisms to report lost data in the selective
repeat retransmission mode is described incompletely: the case of reporting the loss of
the last data unit of a data stream is not mentioned explicitly. Thus, in our opinion, the
XTP description allows two different solutions. If two cooperating implementations
realize different solutions, loss of data can occur. According to the XTP developers,
only one of the two solutions is valid and the next version of the XTP definition will
state this clearly.

Besides this safety problem, we detected two weaknesses with regard to liveness.
The first point depends on the XTP priority mechanism which enables the prioritization
of certain connections. If the PDU selection algorithm is too rigid, a connection of high
priority can suppress a connection with lower priority. Second, a station can paralyse
its peer by abusing a protocol function which is included to enable it to discover the
actual turn-around-time. If it requests immediate reports of its peer’s connection state
continuously, the peer is not allowed to deliver any received user data to its user.
These problems are not errors of XTP but may occur in implementations.

9. Concluding remarks

The transfer protocol framework was established in order to support the practical
design of high-speed transfer protocols. In contrast to most other protocol verification
approaches, our work did not concentrate on automated tools and general verification
methods, but aimed at a direct support of the understanding of services, protocols,
their logical constituents and structuring by means of the provision of process types and
theorems. Since the framework follows a new approach – and since it explicitly aims to
support practical protocol designs – experiences of its application to complex real-life
protocols are of interest. Therefore we applied the framework to the protocol XTP and
accomplished a complete analysis of the functionality of the unicast services of XTP. In
our opinion, the work was performed very efficiently since we were able to complete
the verification within a time period of three weeks. We were able to construct all
formal specifications needed by composing instantiations of framework modules. All
necessary proofs of the protocol verification were directly supported by the theorems
of the framework. Therefore, we profited from the comprehensive work, we spent
for the development of the framework and the proof of its theorems. Moreover, we
took advantage of the logical orientation of the framework which provides for a close
relationship between formal verification steps and protocol properties. This facilitated
the interpretation of results and supported a clear structuring of the work.



P. Herrmann, H. Krumm / Modular specification and verification of XTP 221

References

[1] T. Braun, B. Stiller and M. Zitterbart, XTP and VMTP on multiprocessor architectures, in: Proceed-
ings of the International Workshop on Advanced Communications and Applications for High-Speed
Networks (1992).

[2] W.A. Doeringer, D. Dykeman, M. Kaiserswerth, W. Meister, H. Rudin and R. Williamson, A survey
of light-weight transport protocols for high-speed networks, IEEE Transactions on Communications
11 (1990) 2025–2039.

[3] O. Drögehorn, Ein Werkzeug zum formal basierten Entwurf von Hochleistungsprotokollen, Diploma
thesis, University of Dortmund, 1996 (in German).

[4] P. Herrmann, Problemnaher korrektheitssichernder Entwurf von Hochleistungsprotokollen, Ph.D.
dissertation, Universität Dortmund (November 1997). To appear in Deutscher Universitätsverlag
1998 (in German).

[5] P. Herrmann and H. Krumm, Compositional specification and verification of high-speed transfer pro-
tocols, in: Protocol Specification, Testing, and Verification XIV, eds. S.T. Vuong and S.T. Chanson
(Chapman & Hall, 1994).

[6] P. Herrmann and H. Krumm, Re-usable verification elements for high-speed transfer protocol con-
figurations, in: Protocol Specification, Testing, and Verification XV, eds. P. Dembiński and M. Śred-
niawa (Chapman & Hall, 1995).

[7] ISO, LOTOS: Language for the temporal ordering specification of observational behaviour, Inter-
national Standard ISO/IS 8807 (1989).

[8] L. Lamport, The temporal logic of actions, ACM Transactions on Programming Languages and
Systems 3 (1994) 872–923.

[9] T.F. La Porta, A feature rich transport protocol: Functionality and performance, Ph.D. dissertation,
Columbia University, New York (May 1992).

[10] T.F. La Porta and M. Schwartz, Architectures, features, and implementation of high-speed transport
protocols, IEEE Network Magazine (1991) 14–22.

[11] T.F. La Porta and M. Schwartz, The MultiStream Protocol: A highly flexible high-speed transport
protocol, IEEE Journal on Selected Areas in Communications 11(4) (May 1993).

[12] N. Lynch and M. Tuttle, An introduction to input/output automata, CWI Quarterly 2(3) (September
1989) 219–246.

[13] A. Mester and H. Krumm, Composition and refinement mapping based construction of distributed
applications, in: Proceedings of the Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (BRICS, Denmark, 1995).

[14] W.W. McCune, OTTER 3.0 Reference Manual and Guide, Research Report ANL-94/6, Argonne
National Laboratory, Argonne, IL (January 1994).

[15] Protocol Engines, Incorporated, XTP protocol definition revision 3.4 (1989).
[16] A.S. Tanenbaum, Computer Networks, 3rd edn. (Prentice-Hall, Englewood Cliffs, NJ, 1996).
[17] C.A. Vissers, G. Scollo and M. van Sinderen, Architecture and specification style in formal descrip-

tions of distributed systems, in: Protocol Specification, Testing and Verification VIII, eds. S. Agarwal
and K. Sabnani (Elsevier, 1988).

[18] A.C. Weaver, The Xpress transfer protocol, Computer Communications 1 (1994) 46–52.
[19] XTP transport protocol specification, revision 4.0, XTP Forum, Santa Barbara, CA (1995).


