
1  Introduction
Creating systems by plugging together reusable
building blocks is a fundamental engineering princi-
ple that is used in a wide range of domains, especially
in electronics and mechanics. However, looking at
methods and tools that are employed in software and
service engineering, surprisingly little of this para-
digm is effectively used in practice, and there is still
some work ahead before we can plug services together
as easily as LEGO bricks. Leaving aside purely tech-
nical issues like the interoperability between different
platforms, there are fundamental properties of ser-
vices which need to be taken into account, as we will
discuss in the following.

1.1  Challenges of Service Engineering

Despite the immense attention currently paid to ser-
vices and service engineering, no common definition
can be found in the literature. We use the following:

A service is an identified functionality aiming to
establish some effects among collaborating entities.
This definition is quite general and captures most
common uses of the term service. In requirements
engineering, for instance, one is concerned with end-
user-services and system services, understood as
partial functionalities provided by a system to its
environment. Our definition captures both passive
services that merely respond to external stimuli as
well as active services that have autonomous behav-
ior and may take initiatives towards their environ-
ment. As a special case it captures the concept of ser-
vice as an interface used in web services, contempo-
rary SOA [1] and middleware such as CORBA [2].
Finally, it covers the notion of service found in proto-
col engineering, namely the functionality provided
by one protocol layer to the layer above [3]. We note
here that services have the following fundamental
aspects:

• Services are functionalities; they are behaviors
performed by entities.

• Services imply collaborations; it makes no sense
to talk about a service unless at least two entities
collaborate.

• Service behavior is cross-cutting; it implies coordi-
nation of two or more entity behaviors. Different
sessions of a service span several components.

• Service behavior is partial in the sense that it is
related to a specific task; it is to be composed with
other services to obtain a complete system.
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Services generally involve collaborative behavior among several components. With Arctis, our UML-

based tool for service engineering, we support this inherent property of services by letting collabora-

tions among components be the major specification units. Collaborations are orthogonal to traditional

components and constitute a new kind of entity with a high potential for reuse in comparison to com-

ponents. Despite their cross-cutting nature, collaborations may be defined, understood and analyzed

separately from each other, so that they can encapsulate service behavior as self-contained building

blocks. Due to the SPACE method, the semantic foundation of Arctis, a rigorous analysis via model

checking is possible. Because of the compositional semantics based on temporal logic, model check-

ing can be applied efficiently on each collaboration separately, which reduces the state space needed

through the analysis. Arctis manages to hide these formal issues from the users and presents analysis

results within the editor as easily understandable animations of UML activities, so that no expertise in

formal methods is required. Moreover, component designs including state machines are automatically

generated from collaboration models. From these components, executable code can be generated

using the Ramses code generators. In the following we present the development steps implied by

Arctis using an example from the home automation domain.

Figure 1  Services as collaborations among several
components. Services are composed by couplings
within components resulting in the overall system
behavior
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This results in two axes of decomposition, illustrated
in Figure 1: A collaboration axis, which decomposes
the system functionality into services and sub-ser-
vices and that focuses on the collaborations among
components, and a component axis which decom-
poses the system into components and defines the
complete behavior of each component. Traditionally
there was more emphasis on the component axis
because it allows systems and system behaviors to be
completely defined. Languages such as SDL [4] and
UML [5] support this and enable component behavior
to be defined in terms of communicating state
machines in a form that can both be understood by
humans, formally analyzed and used as an input for
automatic code generation.

The main drawback with the component view is that
(1) one has to consider the joint behavior of several
components in order to understand how services
work, and (2) service behavior is bound to particular
components. The common solution to these problems
has been to express collaborative behavior using mes-
sage sequence charts (MSC, [6]). But this has the lim-
itation that it is normally practical only for limited
use cases or scenarios. A good way to completely
define cross-cutting service behavior has been miss-
ing. This is about to change.

1.2  The Development Cycle

Our overall development process is outlined in Figure
2. It is a model-driven approach centered on service
models and design models. The main novelty lies in
the pivotal use of service models. They are used to
define services completely and in a way that enables
formal analysis and automatic derivation of design
models and subsequent generation of executable
code. Therefore, the approach is an application of the
principles of the Model Driven Architecture (MDA,

[7]) in which the abstraction level is lifted from
design models (which is the current practice), to
service models.

All models closely reflect the nature of reactive sys-
tems and their services. Reactive systems are typi-
cally distributed and are implemented by a number of
components that communicate with one another by
means of buffered signals sent over communication
channels. Design models focus on the component
axis, i.e. decompose a system into its executable com-
ponents which can be suitably expressed in terms of
SDL processes or UML 2.0 state machines. This is a
well established practice that has been used in tele-
communications since the early days of switching
systems, and spreading onto automotive, aeronautics
and other domains. For that reason, we developed in
earlier work the Ramses plug-ins for Eclipse, which
contribute code generators to produce executable
Java code from UML 2.0 state machines [8]. Service
models focus on the collaborative axis. They reflect
the distribution of components, but emphasize the
collaborative nature seeking to define complete ser-
vice behavior. For the service models, we utilize a
combination of UML collaborations and UML activi-
ties, as we will explain in Section 2. Since these ser-
vice models describe complete behavior, they can be
transformed into state machines by means of an auto-
mated model transformation.

1.3  Collaborations vs. Components

The concept of using collaborations as major specifi-
cation units, given the traditionally strong focus on
components, may sound provocative. In the model-
driven setting of Figure 2, however, many reasons for
using the same units for specifications as for execu-
tion and physical deployment vanish: Taking model-
driven development seriously, it is within its very
idea that specification and implementation can refer
to different perspectives, with automated transforma-
tions bridging the gap between them. We can there-
fore have both, the benefits of components and col-
laborations. Within our research, we found collabora-
tions to be beneficial for the specification and compo-
sition of services for three major reasons:

• In our experience, collaborations have a higher
potential for reuse than components. This may
come as a surprise, since components are often
advertised as the units of reuse. Due to the cross-
cutting nature of services as described above, com-
ponents must fulfill several concerns. Collabora-
tions, in contrast, are typically related to a specific
task and more focused on a certain functionality.
Similar experiences have also been made by others,
see for instance [9], [10].

Figure 2  The development cycle, based on a model-driven approach
with emphasis on service models and design models. Design models are
derived from service models by an automatic model transformation
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• The composition of collaborations is easier to
handle by humans than the composition of compo-
nents. The composition of components often needs
to take an asynchronous communication medium
into account, which can introduce interleaving
behaviors that need to be coordinated. Collabora-
tions, on the other hand, can be composed syn-
chronously within components. The detailed inter-
action protocols with solutions to resolve conflicts
and channel problems are designed once and
encapsulated within collaborations. Formally, we
utilize the synchronous coupling of collaborations
within components by mapping them to joint action
composition in temporal logic (see, for example
[11]), which enables a compositional verification.

• In contrast to components, collaborations can be
studied in isolation, since they describe a self-con-
tained behavior. This facilitates their formal analy-
sis by model checking, since it reduces the state
space during the analysis.

Collaborations can also be used to type components
with the collaboration roles they provide. This infor-
mation can be used to support dynamic service dis-
covery and validation of component compatibility
in systems with dynamic linking as proposed in [12],
[13]. Another possibility is to utilize collaborations
in policy-driven dynamic adaptation as proposed in
[14]. In this article, we focus on collaborations as
specification units and the necessary tool support to
obtain complete and executable systems in the first
place.

2  The SPACE Method
Although UML determines to some extent how to
describe systems, it does not tell us in which order
diagrams are created, what the criteria for consistency
among them are, or how they are systematically ana-
lyzed and implemented. For this reason, we devel-
oped the SPACE method [15], [16], [17] which uses a
combination of UML 2.0 collaborations and UML
2.0 activities to describe systems and their services by
compositions of collaborative building blocks. For
the implementation, SPACE defines an automated
model transformation [18] that converts the collabo-
rative service specifications into executable compo-
nents and state machines.

2.1  UML Collaborations for Service

Structures

Figure 3 shows a UML collaboration.1) The boxes,
so-called collaboration roles, denote participants of
the collaboration. Since the collaboration of Figure 3
displays the system on its highest level of decomposi-
tion, the collaboration roles correspond to system
components. In the example, these are a number of
devices and servers to realize a mobile alarm service,
in which home owners are informed about alarms in
the house via their mobile phone. This system is part
of case studies carried out within the applied research
project Infrastructure for Integrated Services (ISIS),
supported by the Research Council of Norway.
Within the house of a user (informally depicted in
the diagram), a number of sensors are deployed,
for example motion or fire detectors. A camera is
installed, so that the area covered by a sensor may
be inspected also remotely. The sensor and camera2)

Figure 3  UML Collaboration for the Mobile Alarm System. The rectangular collaboration roles denote the
participants in this service. The elliptical collaboration uses specify occurrences of sub-services between the
participants. The labels at the dashed connections are role bindings explaining which role in a sub-service a
participant plays. The house in the background is for illustration only

1) To distinguish our more general understanding of collaborations from the specific UML elements, we will refer to the latter explicitly
as UML collaborations.

2) For the discussion, we focus on a single sensor and camera. Mechanisms to handle multiple elements of a type are detailed in [16].
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are connected to a residential gateway, which acts as
a hub towards the application server of the telecom
operator. Since the alarm service also incorporates
traditional call-based features, the application server
of the operator is connected to a call control server.
Bound to the collaboration roles are collaboration
uses. They denote functionality that is provided
together by all participating collaboration roles.
The role bindings depicted by the dashed lines show
which part a collaboration role takes in each collabo-
ration use. In the example, collaboration use s1: Sen-
sor Alarm describes how the sensor notifies the resi-
dential gateway about an alarm. Collaboration use
t: Terminal Status is used to determine the availabil-
ity of the home owner’s phone. In case of absence, an
SMS can be sent via s2: Send SMS. The collaboration
use a: Alarm Dialog encapsulates an interactive voice
dialog that is used to inform the home owner about an
alarm and to ask what actions should be taken, and
s3: Security Dialog is a similar collaboration to call
additional help from a security company if needed.

While UML collaborations provide a good overview
of the structural issues of a service, i.e. from which
sub-services it is composed and which roles are
played by a component, they do not tell us the
detailed behavior. For this purpose, we use UML
activities.

2.2  UML Activities for Service Behaviors

The UML activity in the right side of Figure 4 com-
plements the UML collaboration of Figure 3. Each
collaboration use of Figure 3 corresponds to a call
behavior action in Figure 4. At the frame of each call
behavior action there are pins that denote events that
can be coupled with each other. In this way, we can
express how the different sub-collaborations are co-
ordinated. In the example, the service begins with the
initial node in the upper left corner by starting the
sensor alarm collaboration. Once an alarm occurs, a
token is emitted via pin alarm, which triggers the col-
laboration t: Terminal Status, to inquire the availabil-
ity of the home owner’s phone. This collaboration has
three possible outcomes, denoted by its three output
pins reachable, busy and unreachable:

• If the phone is reachable, the alarm dialog is
started. On this level of the service specification,
we are just interested in the fact that this dialog
ends by a request to reset the alarm or to call for
additional help. In the latter case, the collaboration
s3 is triggered to start a dialog with the security
company that then takes care of the rest.

• If the phone is busy or unreachable, an SMS is sent
out to inform later about the incident, and a dialog
with a security company is started immediately.

The sensor alarm is eventually reset by either the
security company or the home owner, whereupon

Figure 4  The Eclipse workbench with the Arctis Editor. On the left side is the library of building blocks, from
which building blocks may be dragged into the editor to compose them. The editor in the main window shows
the activity for the highest level of the Mobile Alarm System that gives the behavioral details of the collabora-
tion in Figure 3
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the entire activity terminates. The detailed internal
behavior of each building block is described by
activities as well, which we will explain later.

2.3  Overview of the Development Steps

Figure 5 illustrates the development process implied
by the SPACE method using some screenshots of the
Arctis tools.

Step 1 Building Block Libraries
Due to their good potential for reuse, we have already
collected a considerable number of collaborations
that are useful in many applications (such as Send
SMS or Terminal Status), and stored them in domain-
specific libraries. Each collaboration is encapsulated
as a building block and consists of a UML collabora-
tion and complementary activity as described above,
as well as a special interface description that we will
explain later. 

Step 2 Service Composition
To compose services, collaborative building blocks
may be dragged from the libraries into the Arctis edi-
tor. In the structural view using UML collaborations,
they are bound to the collaboration roles and in this
way assigned to the components that execute them. In
the behavioral view using an UML activity their pins
are connected as explained above. Additional logic
may be added as well. Note that there may be any
number of decomposition levels; the building block
Alarm Dialog in Figure 4, for instance, is itself com-
posed of several building blocks, as we will see later.
This makes the method scalable, since larger systems

do not lead to more complex activities but to a higher
number of decomposition levels.

Step 3 Lightweight Analysis
Our tool checks the UML model for syntactic consis-
tency and simple properties which can be done in the
background, similar to development environments for
programming languages.

Step 4 Automated Model Checking
Due to their formal semantics which we defined in
temporal logic, the building blocks and their compo-
sitions may be analyzed thoroughly by means of
model checking. This analysis is automated, based on
properties that must be fulfilled by any service speci-
fication to be consistent. Once Arctis finds design
flaws, engineers are notified and can study the error
situation by means of animations within the editor.

Step 5 Model Transformation
After completing the collaborative specifications, the
subsequent implementation is fully automated. In a
first step, the activities are transformed into the exe-
cutable state machines of the components. These
models are only an intermediate product necessary
during the automatic implementation process; they do
not have to be read, understood or maintained by
engineers. Instead, they serve as direct input for the
code generation performed in the next step.

Step 6 Code Generation
Using the state machines as input, code generators pro-
duce executable implementations for several platforms.

Figure 5  An illustration of the steps involved in the development of a system with Arctis and SPACE. Building blocks are selected
from libraries (1), and composed using UML collaborations and activities (2). A lightweight analysis (3) checks mainly syntacti-
cal consistency of the models, and automated model checking (4) the behavioral soundness of the compositions. The subsequent
tasks to implement the specifications via a model transformation (5) and code generation (6) are completely automated
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2.4  The Arctis Tool

Arctis is implemented as a set of Eclipse plug-ins. An
overview of some technical details of its architecture
is provided in Fact Box 1. The major interfaces
towards the users are the library of building blocks
and the editor for UML collaborations and activities,
visible in Figures 3 and 4. Since Arctis is specialized
for SPACE, many of the constraints we imply on
UML models are ensured in a constructive way since
editing actions obey them automatically. Due to the
high degree of automation, users interact only with the
editor as depicted in Figure 6. Formal analysis is per-
formed in the background and the results are projected
back into the editor. Once a specification is correct,
the model transformation to implement components
needs no further interaction. In the remainder of this
article, we will develop our example application in a
top-down manner using all features of the tool.

Fact Box 1 – Arctis Tool Architecture Based on Eclipse

Arctis is implemented as a set of plug-ins based on the Eclipse platform [19]. While Eclipse is probably best known as a Java

development environment, it provides an application framework useful for a wide range of purposes.

Figure 6  Arctis as seen from a user’s perspective
with the editor as major interface. Results of the for-
mal analysis are projected back as annotations and
animations into the editor, and the model transforma-
tion can be started by a simple command
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The figure above illustrates the major components involved in Arctis. The UML models are managed by the UML 2.0

repository provided by the Eclipse Modeling Project [20]. This implementation uses the Eclipse Modeling Framework (EMF,

[21]), a Java-based meta-modeling framework. It provides mechanisms to serialize models as XMI files, gives access to the

UML model by representing each element by a Java object and provides a transaction mechanism to ensure consistent

manipulations of the models. To edit a model, Arctis specializes actions, editors and other user controls provided by Eclipse.

The graphical editor for activities (shown in Figure 4) is written using the Graphical Editing Framework (GEF, [22]). The library

browser on the left side of Figure 4 is an Eclipse view element, contributed by Arctis as independent plug-in with access to

the UML repository. Due to this loose coupling, an integration of Arctis’ capabilities with other Eclipse-based UML tools is

possible as well.

Our inspection framework is an extension mechanism to add checks (we call them inspectors) that examine model elements

for certain properties. The inspection framework schedules the inspectors on model changes, and notifies the user about

inconsistencies once flaws have been found by annotating the model.

Similarly, code generators may be added as Eclipse plug-ins, which makes it possible to handle an arbitrary number of code

generators for different platforms or different versions of a framework. The plug-ins for code generators may also contain

example projects and necessary resources and libraries for execution, so that all can be provided as one self-contained

artifact.
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3  Collaborative Building Blocks
Building blocks are triplets consisting of a UML col-
laboration and a UML activity as shown above plus
an additional interface description that is used to
abstract from the internal details of a block when it is
composed. In the following, we will look at the inter-
nal behavior of the terminal status collaboration, then
discuss the interfaces of building blocks and how
details of their operations are described.

3.1  Internal Behavior

The internal behavior of the terminal status collabora-
tion is described by the activity in Figure 7. Each col-
laboration role (here client and server) is represented
by its own activity partition. The collaboration is
started via pin get, the Mobile Subscriber ID (MSID)
of the user is passed towards the server, which
retrieves the status of the terminal by operation get-
Status. The decision node and the subsequent guards
determine how the collaboration terminates according
to the content of the status object. Terminal Status is
an elementary collaboration, meaning that it is not
composed from other collaborations. Composite
collaborations contain collaboration uses, and their
activities refer to corresponding call behavior actions,
as shown in Figure 4. In Section 4 we discuss how to
ensure that an activity (either composed or elemen-
tary) is consistent.

3.2  Interfaces of Building Blocks

The external behavior of the terminal status collabo-
ration is rather simple, since only one starting input
pin and the three alternative output pins are involved.
The resulting behavior is described by the external
state machine (ESM) shown in Figure 8. Its transi-
tions refer to the pins that are traversed by tokens.
The slash (“/”) separates pins triggered from the out-
side of the building block from those triggered as a
reaction to an external trigger or an event within the
building block. Hence, the first transition that acti-
vates the block is labeled get/, while the subsequent,
alternative termination transitions are labeled /reach-
able, /busy and /unreachable.

Another building block realizes an interactive voice
dialog, in which text messages can be synthesized to
speech and played to a user, who can give feedback
with the dial tones (Dual-Tone Multi-Frequency,
DTMF) of the phone. Since this dialog is highly inter-
active, its external interface, shown in Figure 9, is
more complex. Note, however, that the knowledge of
this interface is sufficient when we want to use such
an interactive voice dialog in our system and ensure
that we use it properly. To make it easier to under-
stand, we have split the ESM into two fragments and
show the states ready and speaking also in the lower
fragment. The voice dialog is started via input pin

dial. This establishes a call connection to the receiver,
whose number is given by the MSID passed as argu-
ment via dial. If the receiver cannot be reached, the
dialog terminates by the terminating output pin busy.
Otherwise, a token is emitted via output pin ready.
This node is a streaming pin drawn in solid black, to
emphasize that tokens may pass it while the building
block is active. Once a token is emitted by pin ready,
the surrounding context may create a string message
and send it into the voice dialog via speak. The
string is then synthesized to speech and played to the
receiver. Every time a string is processed completely,
a token is emitted via ready. This is described by the
transition in the ESM of Figure 9 labeled /ready.
Since the notification via /ready may immediately
trigger a speak request (within the same run-to-com-
pletion step), there are additional transitions labelled
/ready+speak which allow a direct transition. The
DTMF tones sent as replies by the receiver are pro-
cessed by the internal logic of the building block. For
each tone received, a token carrying a DTMF object
is emitted via pin tone. Since the receiver can hang up
at any time, the states ready and speaking have out-
going transitions labeled /hangup. If the server wants
to end the dialog, it may issue a bye/ which brings the
block into state terminating upon which it eventually
terminates. Since a bye may be triggered by a dial

Figure 7  Internal solution for the terminal status col-
laboration. Both participating roles are represented
by their own partitions (client and server)

Figure 8  External view on the collab-
oration Terminal Status to retrieve
status information of a mobile phone
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tone (because the user made a selection to end the
conversation, for example) there is a transition
labeled /tone+bye that allows this combination.

3.3  Integration of Java and UML

The behavioral models of collaborations expressed by
UML activities focus on the coordination of behavior.
Detailed manipulations on objects or data in general,
as well as access to existing APIs is handled within
UML operations. Since the UML standard [5] does
not provide its own language to write down detailed
actions, we use Java to express operations within
UML activities.

The sophisticated editor for Java provided by the
Eclipse Java Development Tools (JDT, [23]) offers
assistance like code completion or automatic correc-
tions. To make these features available in Arctis, ded-
icated Java classes for each building block are used.
Figure 10 illustrates this correspondence. With a click

on the UML operation on the left side, the editor nav-
igates to a corresponding Java method, which can be
edited with all Eclipse editing features. If return val-
ues of method parameters are changed, the UML
operation is updated automatically.

4  Automated Analysis
For the analysis of specifications, Arctis offers three
main features: Numerous inspectors ensure in a first
step the consistency of the models, focusing on syn-
tactic or simple behavioral issues. Users may also
animate the behavior of activities by simulating them
step by step. Finally, a thorough analysis via model
checking finds erroneous behavior automatically.

4.1  Lightweight Model Inspection

Similar to modern text-based editors for program-
ming languages, Arctis performs checks of the model
in the background and notifies the engineer by anno-
tating the model with error messages and optional
solutions. Lightweight means that the inspectors
directly work on the UML model, not a state space
of its behavior as during model checking that we
will discuss later. Inspecting the initial design for the
Alarm Service from Figure 4 reveals some problems
with the data flows. For instance, there is a direct
flow from the output pin alarm: Alarm of collabora-
tion s1: Sensor Alarm that carries an Alarm object to
the input pin get: MSID of collaboration t: Terminal
Status, which rather requires an MSID. Arctis anno-
tates the corresponding flow with the message shown
in Figure 12. As corrections, we can select to add a
conversion operation or to insert a pair of variable
actions, so that the alarm object is stored and the
MSID is retrieved from another local variable. We
choose the latter solution, which results in the addi-
tional elements between the pins as shown in Figure
11. Arctis provides numerous inspectors that ensure
for example that the service models are in accordance
with our UML profile for service specifications [24].
Due to the extensible plug-in architecture of Eclipse
(see Fact Box 1), additional inspectors may be added
to Arctis quite easily by anyone. This is useful if con-
straints specific for a domain or project should be
ensured.

Figure 10  The contents of UML operations is described by Java methods, which are managed by Arctis. Since
Java methods are edited within the standard Eclipse editor for Java, all editing features are accessible

Figure 9  External view of the collaboration realizing
an interactive voice dialog
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4.2  Animation of Activities

One reason why engineers often prefer to write code
like Java, rather than to model in a language like
UML is the fact that programming languages are
executable and serve both as feedback about what the
program does and as proof that some ‘useful’ work
has already been done. This has been described as the
‘Rush-to-Code-Syndrome’ in [25]. To counter these
tendencies, Arctis provides functions to animate spec-
ifications in early design phases, based on the token-
flow semantics of UML activities [5].

A simulation of our example system is illustrated
in Figure 11. Starting in an initial state, users can
browse through the possible next actions and then
execute one of them, which brings the activity into
its next state. Such simulations have turned out to be
extremely valuable for demonstrating a specification,
or simply to play with it in order to understand its
behavior.

4.3  Automated Model Checking

Since activities describe complete behavior, model
checking (see, for instance [26], [27]) is possible.
With this technique, all reachable states of a program

Figure 11  Completed composition of the Mobile Alarm System. In this final version, all collaboration roles of Figure 3 are repre-
sented by activity partitions (such as sensor or camera), and call behavior actions are placed according to their role binding. In
addition, we added the necessary operations on data to make flows compatible. The diagram is in animation modus, showing the
token flow from system start to the start of the alarm dialog. The film strip to the right illustrates its stepwise simulation

Figure 12  Diagnosis as result of an inspection of the
model. In some cases, Arctis suggests possible solutions
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are searched and analyzed. This normally leads, even
for small systems, to a high number of states. How-
ever, since we can abstract building blocks by the
external descriptions provided by ESMs, we can
analyze systems in a compositional and incremental
way, that means analyze each collaboration sepa-
rately. So, when we analyze the Alarm Dialog in Fig-
ure 13, the internal behavior of the Camera Stream
and the Interactive Voice Dialog are abstracted by
their ESMs. This reduces the state space consider-
ably, and enables us to check a collaboration even if
its sub-collaborations are not yet defined completely

by their internal behavior through an activity, follow-
ing a top-down approach.

The Alarm Dialog collaboration used in the com-
posed service of Figures 4 and 11 starts a voice dia-
log with the home owner to determine if additional
help should be requested or if the alarm should be
reset. The external behavior of this collaboration is
therefore rather simple; after a start via its starting pin
start, it eventually terminates via output pins reset-
Alarm or call Help. Internally, the Alarm Dialog uses
two collaborations: The notification to the user is
given via the interactive voice dialog discussed
before, and the camera stream is delivered by a sepa-
rate building block. Figure 13 displays an initial solu-
tion for the coupling of the interactive voice dialog
with the camera stream. The collaboration starts with
pin start at the upper left corner. The alarm object
provided from that call is stored in variable alarm,
and the MSID of the user is retrieved, whereupon the
interactive voice dialog c1 is started. If the user is
busy, c1 terminates via busy, which terminates the
entire collaboration via call Help. If the user picks up
the phone, pin ready emits a token, whereupon the
server creates a message about the alarm. This mes-
sage is then synthesized to speech within the voice
dialog collaboration and played to the user. While the
message is read, the user may send in commands via
the DTMF tones of the phone. Each tone triggers a
token of type DTMF to be emitted via tone. The fol-
lowing decision node diverts the token according to

Figure 13  An initial solution for the internals of the Alarm Dialog. It uses the interactive voice dialog from
Figure 9 and a new building block realizing a video stream from a camera. Although the specification is
syntactically correct, the automated model checking in Arctis will reveal several flaws during model checking

Figure 14  The illustration of an error situation as
presented by Arctis. The token wants to start the
camera stream although it is already in state active
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which key has been pressed, either to start the cam-
era, to reset the alarm, or to call for additional help.

By default, Arctis checks the specifications for a
number of properties that are generally desirable
behavior. For example, whenever a collaboration ter-
minates, the sub-collaborations of which it is com-
posed should terminate consistently, and the con-
tained message queues should be empty. In addition,
a collaboration should never harm the interface
descriptions of the building blocks. Following our
strategy to hide formal aspects from the user, the
model checker may be started by a simple menu
action and provides its results as annotations to the
model, similar to those of the lightweight analysis.
For the alarm system in Figure 13, Arctis identifies
the following problems:

• The collaboration may terminate, but there are still
signals under transmission, in this case between the
server and the residential gateway.

• Since users may press the dial tones in any order
and frequency, the camera may be initialized more
than once. Formally, this also leads to an un-
bounded transmission queue between the operator’s
server and the residential gateway.

• The Alarm Dialog may terminate, but without stop-
ping the camera. This happens because the termina-
tion does not wait for the camera to confirm a stop,
and because a reset may terminate the collaboration
without sending a stop notification to the camera in
the first place. Similarly, the interactive voice dia-
log may not be terminated properly after a reset
alarm request from the user.

The screenshot in Figure 14 shows how Arctis
notifies the user about the violation of the Camera
Stream collaboration that is initiated more than once.
For each of the error reports, Arctis offers to animate
the specification up to the state in which the error
takes place. Alternatively, only an illustration of the
error situation may be provided.

The user may also look at a graphical representation
of the state space for the collaboration. We found that
this provides quite interesting information about a
collaboration as a whole that is usually easy to under-
stand. The state space for the Alarm Dialog is pre-
sented in Figure 15. Each node in this graph corre-
sponds to a distinct token marking in the activity, and
each edge corresponds to an activity step, meaning
the movement of one or several tokens within the
activity. States violating certain properties are shown
in orange, and activity steps harming certain rules are

shown in orange as well. By clicking on the states,
the corresponding token markings are revealed within
the editor, and a click on the edges animates the cor-
responding activity steps. Additional functions like
an identification of the shortest path towards an error
situation can be used to start an animation in the
editor. Moreover, we undertake research on more
advanced diagnostics of error situations and the auto-
matic proposal of solutions [28], [29]. After studying
the error situations, we make the following changes
which result in the version of the Alarm Dialog as
displayed in Figure 16:

• To prevent the camera from being initiated more
than once, only one token may be sent to it. This
is achieved by the local activity block One which
passes one token and eliminates all further ones.
For our application this means that once the user
has pressed the key to start the camera, all further
activations of that key will be ignored. (This also
solves the problem with the unbounded queue.)

• The termination logic is improved with two
instances of the local building block Switcher,
which diverts a token entering via in to either out1
or, after it is toggled via switch, to out2. Switcher
s1 is used to stop the camera via out2 in case it
actually has been started, and switcher s2 is used
to divert the terminating token towards pin reset-
Alarm if the user has previously pressed the dial
tone corresponding to RESET_ALARM.

A repeated run of the model checker on the improved
design reveals no further errors, so that we may pro-
ceed with the automatic implementation of our system.

Figure 15  A visualization of the state space for the Alarm Dialog of
Figure 13. Nodes represent the reachable states of the activity, and
edges the possible token movements. Red elements mark erroneous
situations. A click on them reveals the situation as animation in the
Arctis editor
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5  Automated Implementation
To automatically create the components with their
state machines necessary for the implementation
and execution, the model transformation realized by
Arctis identifies which parts of the collaborations
expressed by activities need to be mapped to the dif-
ferent components under construction, as illustrated
by Figure 17. For instance, to realize the state
machine for the whole application server (see Figure
3), the partition appServer of Figure 11 is taken
together with those parts of the collaborations that are
also executed within the application server, for exam-
ple the parts of the server in the Alarm Dialog collab-
oration of Figure 16.

5.1  Model Transformation

The model transformation in Arctis maps the behav-
ior implied by the activities to state machines. Some
elements of activities have direct counterparts in state
machines: Decision nodes of activities map to choices
in state machines and operations are directly copied,
together with their Java code. There are, however,
fundamental differences for the handling of most
other activity nodes, since activities execute concur-
rent flows independently, while the executable state
machines we use for implementation have only one
single control state. This leads to an ‘unfolding’ of
the parallel flows into control states and transitions
of state machines. The details of this process are pub-

lished in [16], [18]. In the following, we give an
example to illustrate the transformation. Figure 18
displays the fragment of an activity, in which parti-
tion B receives a value from partition A, then calls
operation 1, and works on the result in operation 2
together with a value contributed by participant C.
Obviously, operation 2 needs the presence of both its
input values u and v before it can start.

The state machine implementing partition B uses four
transitions to describe an equivalent behavior. It starts
in state 0, for which we assume that neither A or B
have sent any values yet. Since the values from A or
C may arrive at any time and in any order, state 0
declares two outgoing transitions; one for each possi-
ble trigger, A or C. If the value from A arrives first,
operation 1 is called. Since the value of C is not yet
received, operation 2 cannot be started, so that the
state machine stores the value of u and waits for C’s
value in state 1. Once the value is received from C in
state 1, operation 2 is called and the result is returned
to A. The other transition starting from state 0 imple-
ments a corresponding behavior for the case that the
signal from C is received before that of A.

This unfolding of the state machines exemplifies
the benefits of our method, in which the traditionally
laborious task of constructing state machines is com-
pletely automated. Since state machines are closer to

Figure 16  The correct solution for the Alarm Dialog. This version uses the additional coordinating building
blocks o1, s1 and s2 to ensure that the camera is initialized only once and terminated consistently. Note that
once this solution is found, it is encapsulated as building block and can be used without ever looking at its
internal details again
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the sequential nature of executable programs, their
presentation of the concurrent behavior of our ser-
vices can yield more complex structures, as shown.
Moreover, to focus on a service behavior on the level
of state machines, the state machine diagrams of all
participating components have to be considered, as
discussed in the introduction. In addition to the dis-
played expansion due to different interleaving of
events from different communication partners, there
are situations in which components may have con-
flicting initiatives. The correct handling of these situ-
ations introduces further complexity in state machines,
which makes the actual intent of a service harder to
overlook. At the level of service specifications ex-
pressed by UML activities, we manage to encapsulate
such coordination behavior by special building blocks,
as demonstrated in [28].

The transformation from activities to state machines
corresponds to a refinement step in temporal logic
which assures that properties of the activities are
implemented by the behavior of the state machines.
Details of the underlying formalism are given in Fact
Box 2.

5.2  Code Generation

The executable state machines produced by Arctis
have a form that is easily implementable using a run-
time support system [34] such as JavaFrame [35]. We
have described this kind of state machine formally in
[33]. They are event-driven and non-blocking, mean-
ing that each transition is triggered by a discrete event
of which the scheduler is notified, and a transition
may always be executed in one run-to-completion
step, without waiting. These facts facilitate the effi-
cient execution on a number of platforms. With Ram-
ses, we realized a number of code generators that pro-
duce code using these principles [8].

6  Concluding Remarks
Due to the hierarchical structure of UML activities
and the compositional semantics employed, the
SPACE method behind Arctis is scalable. As men-
tioned earlier, systems larger than the presented
example do not lead to more complex collaborations.
In fact, our experience shows that the number of ele-
ments within a collaboration is typically quite small.
A more extensive system will rather lead to a higher
number of decomposition levels. This is well sup-
ported, since the analysis only works on one collabo-
ration at a time and abstracts the behavior of its
sub-collaborations by the interface description of
the ESMs. Moreover, the method enables both a top-
down or bottom-up approach: Systems may be suc-
cessively decomposed into separate collaborations
which, in a first step, may only be described by their

Figure 17  An illustration of the model transforma-
tion. To build executable components from the ser-
vice specifications, the collaborations are split up
according to their binding to components, and state
machines for the components are synthesized from
the behavior implied by the corresponding activity
partitions

Figure 18  Transformation from the activity partition
B to a state machine for the execution of an equiva-
lent behavior
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Fact Box 2: Correctness of the Composition and Transformation in Arctis

To assure that the various transformation steps in SPACE preserve the intended behavior of the modeled systems and to

be able to use sophisticated analysis tools like model checkers, we use the compositional Temporal Logic of Actions (cTLA

[30]), a linear time temporal logic. Its semantics is based on infinite state sequences                               starting with an initial

state s0. In cTLA, the various possible behavioral traces of a system S correspond to a possible infinite set of these state

sequences in which the states are expressed by variables υ1, ..., υm (see also [31]). S is modeled by the formula:

–

The condition Init describes properties of the initial settings of the variables υ1, ..., υm. Actions act1, ..., actn define a set of

system transitions. An action is a predicate of a pair of a current and a next state in which the current state is expressed by

normal variable identifiers (e.g. υ1) while the variables referring to the next state are primed (e.g. υ'1). So, the action υ'1 =
υ1 + 1 ... models a system step in which υ1 is incremented. The temporal operator – (always) specifies that the attached

formula holds in all states of each state sequence defining the behavior of S. Thus, the canonical formula describes that

state changes must always correspond to one of the actions act1, ..., actn. To enable refinement proofs (see below), a

system may also perform stuttering steps in which the variables υ1, ..., υm do not change at all. This is expressed by the

brackets 

cTLA uses a powerful composition mechanism enabling to combine system specifications from those of subsystems. 

In contrast to other temporal logic-based techniques using shared variables, cTLA composition is based on joint actions.

The interaction between subsystems is specified by enforcing the synchronous execution of actions in different models. The

actions may carry parameters modeling data transfer between the subsystems. In contrast, the variables of a specification

may only be read and written by its own actions. This guarantees the superposition principle (see [11]) ensuring that each

property assured by a specification S is preserved in every system containing S as a building block. This principle is the basis

for the compositionality of the SPACE method.

In [32] we introduce a set of creation rules mapping the graphical elements of activities to cTLA specifications and actions.

Based on that, one can create five actions modeling the token flows in the activity Terminal Status in Figure 7 of which we

depict three in the following:

In Terminal Status the only places on which a token may rest, are two so-called queue places at the crossings between the

partitions client and server modeling the time delay caused by the data transfer between the partitions. The queue places

are represented by the two queue variables q1 and q2. The action get describes the flow of a token from the input pin get to

the queue place at the partition border to the server. Formally, this corresponds to appending the value expressed by he

action parameter token to q1 while q2 does not change. Likewise, we model the other flows of the activity by cTLA actions.

The interaction between activities is modeled by conjoining the corresponding actions. For instance, get is joint with an

action of the activity Mobile Alarm System forming the surrounding activity of Terminal Status (see Figure 11) which

describes the flow of tokens towards the input pin get. The transfer of the token content is modeled by action parameters

(i.e. token).

Similar transformation rules creating cTLA specifications of UML state machines are introduced in [33]. The fact that both

the UML activities and the state machines are modeled in cTLA enables us to verify that our synthesis algorithm discussed

in Section 5.1 preserves the correctness of the models: As depicted below system SAc specifies the behavior expressed by

the UML activities, and system SSt formally expresses the UML state machines that were generated. Since the behavior of

the state machines has to implement the one described by the activities, SSt must formally refine SAc, which is expressed

as an implication that can be ensured by structured cTLA refinement proofs.

Arctis

Refinement

�

〈s0, s1, s2, ...〉

[...]〈υ1,...,υm〉

S = Init ∧ �[act1...actn]〈υ1,...,υm〉
Δ

get(token : MSID) = q′
1

= append(q1, token) ∧ unchanged(q2)

busy(token : Status) = q2 �= empty∧first(q2) = busy∧token = busy∧q′
2

= tail(q2)∧unchanged(q1)

server() = q1 �= empty ∧ q′
1

= tail(q1)∧

∃token ∈ Status : getStatus((first(q1, token) ∧ q′
2

= append(q2, token)

abstract ESMs. In further steps, these collaborations
can be refined, until all collaborations involved in the
specification are implementable. Vice versa, existing
collaborations may stepwise be composed until a
complete system specification is obtained. These two
strategies may also be applied in a mixed way within
the same project, depending on which building blocks
already exist.

We are currently expanding the analytical capabilities
of Arctis, so that error situations are not only identi-
fied, but the underlying reasons for such behaviors
are found so that the engineers can be assisted fur-
ther, for example by proposing corrections of a speci-
fication that go beyond syntactic changes [29].

UML Activities −→ UML State Machine

.

.

.

.

.

.

SAc ⇐= SSt

∧

Δ

Δ

Δ
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Within the ISIS project, we will develop further case
studies and expand out library for various domains,
with building blocks like Terminal Status and Inter-
active Voice Dialog as presented here. Moreover,
we will facilitate the system development by adding
Quality of Service descriptions to the collaborations
which can be used during the deployment process, i.e.
when components are assigned to execution nodes
[36], [37].

The SPACE method supported by the Arctis tool rep-
resents a first realization of a truly service-oriented
development method. Service engineers may concen-
trate entirely on service models using collaborations
as building blocks, leaving subsequent implementa-
tion steps to tools.
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