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Abstract

Developing complex distributed systems is a non-trivial task.
It is even more difficult when the systems need to dynami-
cally reconfigure the distributed functionalities or tasks. Not
only do we need to deal with the application-specific func-
tionalities that are intricate, but we also have to handle the
complex logic of coordinating the distribution and relocation
of tasks. In this paper, we model an intrusion detection sys-
tem that distributes its analysis units to a number of hosts
and assigns fine-grained analysis tasks to these hosts in order
to cope with the rapid increase of audit data from today’s IT
systems. To avoid the overloading problem, this system also
needs to manage the transfer of some tasks from a host to
another one. To develop this complex system, we apply the
model-based engineering method SPACE. In particular, we
show that the collaborative specification style of the method
can significantly reduce the development effort. Also, the
formal semantics of SPACE ensures the correctness of im-
portant design properties.

1 Introduction

The engineering of a complex distributed system is consti-
tuted as one of the most complex construction tasks for de-
velopers [Jen01]. Such a system consists of a large number
of interdependent parts that must interact to realize certain
functionalities [RWMB98]. To guarantee a correct execution
of a system, it has to be designed and analyzed carefully.
The development is even more difficult for systems that re-
configure the distributed functionalities dynamically. Here,
we also need to deal with the complex logic of coordinating
the relocation of distributed functions.

A distributed Intrusion Detection System (IDS) is an ex-
ample of a complex system that distributes its analysis ca-
pability and dynamically reconfigures it to adapt to chang-
ing contexts. Due to the growing transmission and com-
puting performance of networks and end nodes, IDSs have
to cope with the rapid increase of the audit data volume
(see [CDK+09]). One solution is to distribute the analysis
functions among a number of hosts. But, the workload of

the analysis components may vary because of the continu-
ous changes in CPU load and in network traffic. Therefore,
the IDS should enable a distributed analysis in which the
analyzer tasks may be freely moved among different hosts
according to the current network and processor loads.

When realizing such a distributed IDS, one faces two kinds
of challenges with regard to complexity: the computational
complexity of the pattern recognition in audit data streams
and the coordination complexity needed to distribute and
relocate the analysis task. Since these complexities are of
different nature, they require a different handling. The logic
to recognize attack patterns is formulated in the form of al-
gorithms in a programming language that are implemented
and executed locally to a component. We refer to [MSK05]
for details on efficient attack pattern recognition.

The logic to manage the distribution and relocation of the
IDS functions, on the other hand, is highly interactive in
nature. Such coordination requires the collaboration of sev-
eral components [CPV97]. To facilitate the development of
such a complex system, we use model-based engineering. In
particular, we adopt SPACE [Kra08] and its tool suite Arc-
tis [KBH09] in which collaborative behavior can be explicitly
specified in the form of UML 2.x activities and collabora-
tions. This collaborative specification style enables a higher
degree of reuse than component-based models [KH09]. The
semantics of these diagrams is formally defined [KH10] which
makes it possible to prove important correctness properties
of a specification. The models are self-contained and can be
automatically transformed into executable code.

The focus of this paper is to show that SPACE and Arctis
are not only suited to develop more traditional distributed
services which we already could prove [Kra08], but are also
helpful to create systems comprising dynamic reconfigura-
tion, i.e., the assignment and transfer of analysis functions
to different hosts in a distributed IDS. We first model the IDS
core functionalities executed in a single analysis host and dis-
cuss thereafter how to specify the distribution by rearrang-
ing its building blocks and by adding further Arctis blocks
providing communication and hand over of analysis func-
tions between various hosts. In Sect. 2 we introduce some
fundamentals on IDS and signature modeling needed for the
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further understanding of the paper. The use of SPACE to
model the IDS core functionality is described in Sect. 3, while
Sect. 4 presents the distribution process. In Sect. 5, we dis-
cuss the incremental verification of the system and estimate
the reduction of development effort by using our specifica-
tion technique. Related work and concluding remarks are
presented in Sect. 6 and Sect. 7, respectively.

2 Signature-based Intrusion Detec-
tion

Intrusion detection systems consist of sensors and analysis
units. Sensors monitor the activities of IT systems to be pro-
tected. The behavior of applications and the operating sys-
tem on observed hosts are recorded. IP packets at switches
or routers can also be logged as well. From these observa-
tions, security relevant activities are extracted and sent as
audit events to an analysis unit. IDSs apply either pattern
anomaly or misuse detection. Anomaly detection scans the
current system behavior for deviation from pre-defined nor-
mal behavior. Misuse detection searches for traces of security
violations in the audit data trail using known attack patterns
– the signatures. Misuse detection is applied by the majority
of IDSs used in practice. The implementation and configu-
ration of misuse detection systems are simpler and enable a
significantly higher detection accuracy compared to anomaly
detection. Therefore, in the following we focus on misuse de-
tection based on signature analysis. We model signatures in
an Event Description Language (EDL) which uses a Petri
net like description principle [MSK05].

2.1 EDL Signatures

EDL descriptions consist of places and transitions connected
by directed edges. Places represent relevant system states
of an attack. Hence, they characterize the attack progress.
Transitions describe state changes triggered by audit events
which are parts of the audit data stream recorded during an
attack. An example of an EDL signature with four places (P1

– P4) and three transitions (T1 – T3) is depicted in Fig. 1.
Ongoing attacks are represented in EDL descriptions by

tokens on places. Tokens can be labeled with values like in
colored Petri nets. A place defines zero or more features
which specify the properties of tokens located on this place.
EDL distinguishes four place-types: initial, interior, escape

Feature definitions by places:

∅ int userID int userID,
int processID

string openFile,
int timestamp

ℇ userID=1066userID=1080 userID=1066
processID=12

Conditions:
P3.userID == 1066
host == webserver

E1

T1 T2 P3P1 P2 T3 P4

initial place

interior place

exit place

escape place

transition associated
with event type Ei

token

E3E4

Ei

Figure 1: EDL Signature Example

Figure 2: SUID Signature Example

and exit. Initial places are signature’s starting places which
are marked with an initial token at the start of analysis.
The exit place represents the completion of an attack in-
stance. Thus, a token reaches this place implies that an
attack has been detected. Escape places indicate the oc-
currence of events that make the completion of an attack
instance is impossible. Therefore, tokens reaching this place-
type are discarded. All other places are interior places.

A transition that is triggered by an event of a certain type
can also contain a set of conditions. As shown in Fig. 1, these
conditions can specify constraints over certain features of
the triggering event (e.g., host=webserver) and token values
(e.g., P3.userID=1066). The evaluation of these transition
conditions requires CPU time depending on the complexity
of the conditions and the frequency of the evaluation, which
is determined by the number of occurring events in the audit
data and the number of tokens on input places of a transition.

2.2 Distributed Analysis

Today’s IDSs face a rapidly growing amount of audit data
which often forces them to drop parts of these data. To
cope with this problem, the required analysis effort can be
distributed among a set of cooperating analysis units on dif-
ferent hosts. For this, the signature base of the IDS can
be simply split up into parts for the distinct analysis units.
But, this may lead to a radical increase of communication
effort due to the necessary duplication of audit data for each
analysis unit. Therefore, a more sophisticated signature dis-
tribution is required. To achieve this, we identify minimal
tasks (atomic clusters) in a signature, which can be inde-
pendently assigned to different analysis units. Splitting up
signatures into minimal tasks also enables the optimization
of the necessary communication effort required to distribute
and duplicate the logged audit data for the distributed analy-
sis units. By pooling atomic clusters which analyze the same
type of audit events and assign them to the same analysis
unit, events of this type only have to be sent to the subset
of the analysis units as necessary.

As an example, we consider an EDL signature that de-
scribes a typical multi-step attack on a Solaris system in
Fig. 2. The gray shaded spheres show the three atomic clus-
ters, this signature can be partitioned into. If atomic clus-
ters are assigned to different analysis units, a token forward
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Figure 3: Distributed IDS Overview

mechanism may be needed. In Fig. 2, the execution of tran-
sition T2 from cluster C2 requires to place a token on the
output place P3 which belongs to cluster C3. If C2 and C3

are assigned to different analysis hosts the token has to be
forwarded via a communication channel.

An analysis host can be overloaded due to high CPU load
and network traffic. This can hinder the effectiveness of the
distributed analysis tasks. To avoid the problem, we allow
the high-loaded host to move one of its atomic clusters to
another host which has much lower load. The relocation
takes into account the types of events analyzed by the moved
cluster such that the benefits of grouping clusters are kept.

Figure 3 depicts the principal architecture of a distributed
signature-based IDS applying EDL signatures for attack de-
tection. A sensor logs relevant audit events from the ob-
served traffic of a network component. The atomic clusters
(acs) of an attack signature are assigned to analysis units
(AU s) that are executed on various hosts. Since atomic
clusters only require certain types of events, a filter forwards
events to analysis units as needed. As described above, the
assignment of atomic parts to two different analysis units
(e.g., AU1 and AU2 in Fig. 3) which are located on different
hosts demands for token forwarding. Thus, the analysis units
exchange necessary state information (tokens) among each
other using a local router (rtr) component. If required, e.g.
for load balancing, an atomic cluster can be moved among
hosts. The results of the distributed analysis are aggregated,
e.g., in a database, labeled with a priority value, and evalu-
ated by the security administrator.

3 Modeling IDS Core Functionality

To facilitate the engineering of the complex distributed IDS
described in the previous section, we first only model the
IDS core functionality. Here, we assume that all IDS analysis
units are executed in a single host such that we do not need
to cope with distribution aspects in the current design level.

The model-driven engineering method SPACE [Kra08] and
its tool suite Arctis [KBH09] proved to be suited to han-
dle coordination and communication between several compo-
nents. SPACE uses hierarchies of UML activities that enable
a complete and rather compact description of system behav-
ior by graphical models. The models are collaborative which
allows encapsulation of patterns facilitating a high degree of
reuse. The major specification units of SPACE are reactive

«system» IDS Core
host

spa: Signature Parts Assigner
start

done out: SigPart

getInitCnf

ac: Atomic Cluster
init: SigPartstart-or-resume

in: Token
forward: Token

r: Router
start: ACsCnf in:Token

local:Token

select acId

select all
select acId

remote:Token
update: ACsCnf

pausemove update: State
moved: State

Figure 4: IDS Core Functionality Model

building blocks. Besides the UML activities, SPACE employs
UML collaborations modeling the structure of systems and
system parts, and special UML state machines called Exter-
nal State Machines (ESMs) to express the interface behav-
ior of the blocks. The collaborative models can be model
checked for design errors and automatically transformed to
a component-oriented model in the form of UML state ma-
chines [KH07]. By diverse code generators, the component
models can further be transformed to Java code running on
various platforms.

The UML activity that models the IDS core functional-
ity is depicted in Fig. 4. It is composed of three build-
ing blocks: spa: Signature Parts Assigner specifying a com-
ponent that identifies signature parts and assigns each part
to an atomic cluster instance, ac: Atomic Cluster modeling
a generic atomic cluster (i.e., ac from Fig. 3) and r: Router
describing the routing of EDL tokens among clusters (i.e.,
rtr). For each cluster, there is a separate instance of the
block Atomic Cluster such that many instances are executed
concurrently. This is signified as a shadow around ac: Atomic
Cluster.

The semantics of UML activities is also based on token
flows. On activity edges, activity tokens1 passing from a
node to the next can be used to model both control and
data flows. The interaction between a block and its environ-
ment is described by pins. Arrows on a white background
are starting and terminating pins which model the activa-
tion respective termination of the blocks. Arrows on a black
background are streaming pins which describe flows of activ-
ity tokens while a block is active. At the start of the system
execution, activity tokens are placed in the initial nodes (•).
In Fig. 4, one activity token flows through the call operation
action getInitCnf which retrieves information about the ini-
tial configuration of clusters. The configuration is forwarded
within an activity token to the starting pin of the block r:
Router. Simultaneously, another activity token flows to pin
start of the block spa: Signature Parts Assigner which fur-
ther iteratively emits an activity token via streaming pin out.
This token contains a signature part in the form of the Java

1To distinguish these tokens from those in the EDL description of
Sect. 2, we use the term activity tokens.
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Figure 5: Atomic Cluster Model

class SigPart and is sent to an instance of Atomic Cluster
block identified by acId, as denoted in the select statement
select acId. The block spa: Signature Parts Assigner later
terminates and emits an activity token via pin done.

The externally observed behaviour of the Atomic Cluster
block is described by its ESM depicted in Fig. 5(b). Af-
ter being started by receiving an activity token via pin init,
the block enters the state inactive. An activity token en-
tered via pin start-or-resume triggers the transition to state
active. As shown in Fig. 5(a), this makes the block ready
to receive events from the e: Security Event Listener block
which models the sensor component of an IDS. Following an
activity token emitted via pin event, transition conditions are
evaluated in the call operation action doTransition. There
are three possible results expressed by a decision node: (1)
no attack, since the transition in the EDL model leads to an
escape place excluding an attack; (2) attack, when an attack
is detected due to reaching an exit place which causes the
execution of the call operation action handleIntrusion; (3)
else that corresponds to an EDL token reaching a new inte-
rior place such that further analysis is needed and an activity
token containing an EDL token is sent to another cluster via
pin forward. Correspondingly, a cluster may also receive ac-
tivity tokens containing EDL tokens via pin in from another
cluster. The rest of the behavior will be described in Sect. 4
as it is only related to moving the responsibility of executing
a cluster to another host.

In order to simplify the communication between clusters,
all activity tokens are forwarded to the router (see Fig. 4)
which further uses the configuration information to route
them to the destination. Note that several pins of the blocks
for the router and atomic cluster are not linked, since they
will be used only in the distributed model described in the
next section.

4 Modeling Distribution Function-
ality

Now, we extend the model of the IDS core functionality to
the distributed IDS model by rearranging its building blocks

«system» Distributed IDS
move coordinator

b: Reactive Buffer
init

empty
out: Object

d: Distribution Service
add: Object

next

host

move: MoveInfo

start

moveCompleted
start:ACsCnf

move: MoveInfo

getInitCnf

other hosts [*]

completed

m: Atomic Cluster Manager

Figure 6: Distributed IDS Model

and adding other blocks providing communication and han-
dover of analysis functions between analysis hosts. To keep
the synchronization efforts manageable, when transferring
clusters, we first pause the analysis functions in all hosts,
thereafter carry out a handover, and finally resume the anal-
ysis in the hosts again. Here, we assume that moves of clus-
ters are relatively rare such that the temporary blocking of
the analysis will not strain the overall performance too much.

The model of the distributed IDS is depicted in Fig. 6. It
consists of many collaborative components. In particular, we
have an arbitrary number of analysis hosts executing the var-
ious atomic clusters and a move coordinator harmonizing the
transfer of analysis functions between the hosts. The func-
tionality of the move coordinator is described in the activity
partition of the same name on the left side of the activity
in Fig. 6. The two other partitions describe the behavior
of the hosts. This modeling feature is used to represent an
arbitrary number of collaborating system components which
all conduct the same behavior. The functionality of a rep-
resentative host is described within the partition host, while
the hatched partition other hosts is a placeholder for all the
other hosts collaborating with this representative.

As shown in Fig. 6, each host takes part in d: Distribution
Service which therefore spans both the partitions host and
other hosts. This block specifies the distribution logic of
the IDS system. It may send out an activity token via pin
move to move an atomic cluster from one host to another
whenever the host is overloaded. This command is then sent
to a move coordinator that ensures that only one move is in
progress at a time, queueing any other move command until
the current move is completed. The queuing is realized by
b: Reactive Buffer, a building block from the Arctis library.
As we assume these moves occur rarely, it is unlikely that
too many move commands will be queued up at the move
coordinator.

The Atomic Cluster Manager manages local clusters in a
host. When started, it receives data describing the initial
configuration that tells the host which clusters are local to it.
This block also handles the moving of a cluster if commanded
to do so by receiving a token at pin move. After a move
is finished, a notification is sent via pin moveCompleted to
both the distribution service and the move coordinator to
allow new commands to be carried out.

We give only a short summary of block Distribution Ser-
vice in this paper, since its inner structure is rather similar to
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Atomic Cluster Manager

pi: Pause Handler

host

paused
reqPause

ms: Move Handler
move: MoveInfo

completed

other 
hosts [*]m: MoveInfohostId: Stringmove: 

Move-
Info

r: Router
start: ACsCnf

update:  ACsCnf

reqResume

ac: Atomic Cluster
init: SigPart

start-or-resume move

forward: Token

mr: Move Handler
moveRemote: MoveInfo
newCnfRemote: ACsCnf

mt: Move Handler
newCnfRemote: ACsCnf

pr: Pause Handler
remotePause
remoteResume

set m

start: 
ACs-

Cnf

spa: Signature Parts Assigner
start
finished out: SigPart

select acId pause

in: Token

moved: State
update: State

local: Token remote: Token

in: Token

setState

getState

select acId

move
Com-

pleted

select acId

select all : ac.active

select all : id
in r.localList

newCnfLocal: ACsCnf

select acId

select acId

resumed

Figure 7: Atomic Cluster Manager Building Block

but also simpler than block Atomic Cluster Manager which
will be later described in detail. The Distribution Service
block contains a load monitoring component which period-
ically outputs a metric for the overall load of an IDS host.
Whenever a host detects an overload situation, it will initiate
a search for another host with a significantly lower load to
handle the execution of an atomic cluster instance. If such a
host is available, a move request along with the information
necessary to carry out the transfer of the cluster instance
is emitted from the block via pin move (see Fig. 6). The
completed pin is used to signal the block that the previous
move request is finished and thus a further search for another
host may be executed. This is necessary, since the transfer
process takes time to complete and only one search request
in transit is allowed in order to minimize the communication
cost.

The details of the Atomic Cluster Manager are shown in
Fig. 7. This block applies blocks already used in the IDS
model in Sect. 3. In addition, we create collaborations Pause
Handler and Move Handler to deal with the synchronization
and handover of analysis functions between analysis hosts.
Atomic cluster manager is symmetric, since a host may ini-
tiate a pause request and at the same time it must be ready
to receive a request from others. Therefore, the host in the
Atomic Cluster Manager block needs to play both roles of
Pause Handler. In instance pi, the host plays the role as the
initiator, while in pr as the receiver. Likewise, we use three
instances of Move Handler describing the roles an analysis
host may play when a cluster is moved, i.e., a sender of a
cluster (in instance ms), a recipient (instance mr) and other
or in this case neither a sender or a recipient (instance mt).
We discuss the block Move Handler in greater detail below.

CGN
initiator

c: Countdown
count

notify

receiver 
[*]

getNumOfRcvs

con-
firmed end

init: int

continue

notified
select all / self

Move Handler
source

move: 
MoveInfo

move
Remote: 

MoveInfo

routing 
host [*]

computeNewCnf

com-
pleted

destination

newCnf-
Local: 

ACsCnf
newCnf-
Remote: 
ACsCnf

cgn: CGN
notified

notify

confirmed

(b)(a)

Figure 8: CGN and Move Handler Blocks

The atomic cluster manager maintains a set of clusters
which are described by the block ac: Atomic Cluster and a
shadow around it. Each analysis host has the same set of
atomic clusters, but only those instances which are assigned
to a particular host are active. Like in the model in Sect. 3,
the block spa: Signature Part Assigner first assigns signature
parts to a set of cluster instances via pin out. In parallel, the
router is initialized with the initial atomic cluster’s configura-
tion. Since atomic clusters have to be assigned to a specific
analysis host, the configuration also contains the mapping
between clusters and analysis hosts. After initialization, the
clusters that are assigned to the host are activated via pin
start-or-resume, while the remaining stay inactive (see also
Fig. 5(b)). The active clusters listen to security events as
described in Sect. 3.

Whenever a move request is received, all active local
atomic clusters are deactivated by sending a token to the
pin pause. As depicted in Fig. 5(b), this brings all clusters to
be in state inactive. Simultaneously, a pause request is sent
to all other hosts via instance p0 of Pause Handler. Since
Pause Handler is basically a simpler version of the Move
Handler, we omit here its detailed description but intro-
duce block CGN (Confirmed Group Notification) depicted in
Fig. 8(a), which realizes the coordination between the hosts.
CGN which is included in the Arctis library for group com-
munication sends a message to all receivers and then waits
for all of them to acknowledge receipt of the message before
terminating via pin confirmed. The other hosts receiving
this pause request will pause their local active clusters. This
is shown as an edge from pin remotePause of instance pr:
Pause Handler in Fig. 7. After all clusters in all hosts are
paused as indicated by a token emitted via pin paused in pi:
Pause Handler, the current EDL state of the cluster to be
moved is retrieved and sent within an activity token via pin
moved to a destination cluster in another host. The receiving
cluster will accept the EDL state via pin update.

The move is managed by block Move Handler whose be-
havior is modeled by the activity in Fig. 8(b). The source
host computes a new configuration from the information
about which atomic cluster to be transferred from this host to
a given destination host. This configuration is further sent to
all other routing hosts, while a copy is also sent back locally
through the pin newCnfLocal. The activity token passing
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from source to destination contains the EDL token setting
of the moved cluster as data. When all routing hosts have
acknowledged receiving the atomic cluster configuration and
the destination host has acknowledged its message, the move
handler collaboration terminates via pin moveCompleted.

As described in Fig. 7, once the move handler finishes its
work, the host that initiated the move will request the oth-
ers to resume their work via pin reqResume on p0: Pause
Handler, which the other hosts receive via pin remoteRe-
sume. Thereafter, the IDS can continue detecting unwanted
security attacks. When all hosts have acknowledged resume
requests, a move completed notification is is forwarded via
pin moveCompleted so that another move request may be
carried out (see Fig. 6).

5 Validation and Evaluation

The formal semantics of SPACE enables direct checks of
collaboration-oriented specifications for general design er-
rors. So, it is possible to detect potential system flaws al-
ready at the modeling level. In particular, Arctis tool uses
a model checker [KSH09] which can also simulate specifica-
tions to illustrate their behavior. Due to the compositional
semantics of SPACE and the encapsulation via ESMs, it suf-
fices to validate building blocks separately. This results in
small state spaces which are analyzed for typical error situ-
ations, such as the non-conformance of an activity with its
ESM and boundedness of communication. In addition, we
check that an activity composed of several blocks obeys the
external contracts of each block. For example, the activity
of Atomic Cluster in Fig. 5(a) must conforms to its ESM
depicted in Fig. 5(b). Furthermore, it must obey the ESM
of Security Event Listener block.

In the case of the distributed IDS, the challenge with the
collaborative building blocks lies in the fact that one IDS
host communicates with potentially many others. In order
to verify block Atomic Cluster Manager (see Fig. 7), instead
of using the ESMs of blocks Pause Handler and Move Han-
dler, we first create the ESMs of their instances, i.e., pi, pr,
ms, mr and mt. This type of ESM does not describe the com-
plete external behavior of a collaborative block, but only for
a single role a symmetric block may play. Then, the model
checker in Arctis uses these ESMs and the ESMs of Signa-
ture Parts Assigner, Atomic Cluster and Router to analyze
the Atomic Cluster Manager block.

Another advantage of the SPACE method is the effective
reuse of building blocks. As pointed out in [KH09], we reuse
more than 70% of the system specification by reusing existing
building blocks in the Arctis library. Due to encapsulation
of the building block by the ESMs, we can thereby com-
pletely ignore the details of an activity. This is also referred
to as compositional black-box reuse [FT96]. Furthermore,
the reusable blocks may form distributed system patterns.
With respect to our IDS example, the distribution function-
ality model is a pattern that can be used to develop any
distributed systems which need to dynamically relocate par-

Table 1: Metrics for the IDS Core Model

IDS Core [Fig. 4]

Router

Distribute Signature Parts
Iterator

Atomic Cluster [Fig. 5(a)]
Security Event Listener

Building Block Complexity n

23
34

22
52
14
29

Reused

✓

Experts

I + C
I + C

I + C
I + C
I + C

174Total complexity

tial tasks among components. In addition, the black-box
type of reuse is especially helpful, when a system is created
by different experts, since it confines different working tasks
in the form of building blocks.

To give an estimation for the gains through the kind of
reuse enabled by our method, we assign a complexity num-
ber n to each activity. This number is simply the sum of
nodes nnodes and edges nedges within an activity and can
be compared to measuring the lines of code in programming
languages. For the Atomic Cluster block, for instance, we
calculate a complexity of n = 30 nodes + 17 edges = 47. Ta-
ble 1 and 2 list all complexity numbers for the building blocks
involved in the IDS core functionality and distributed IDS
models. To estimate the effort E in time and costs needed
for building a system we multiply the complexity n with the
number of expert groups involved. The unit of the result is
not important, since we will only use it for comparison. The
multiplication emphasizes that the main effort in creating a
specification is not the actual writing, but the reading and
understanding of it. Intuitively, this means that a specifica-
tion leads to more effort (i.e., higher costs) the more complex
it is and the more expert groups (implying personnel costs)
have to handle it.

In the following we estimate the reduction of development
effort enabled by the collaborative building blocks used by
our method. For that, we compare two cases: one without
and the other with building blocks. In our calculation we
incorporate the different expert groups involved in the de-
velopment, namely those for IDS systems (I) and those for
general communication systems (C).

The overall complexity of the distributed system is n =
599. In a case without building blocks, both expert groups
are involved in the entire specification. This means that
both expert teams have to fully understand the specifica-
tions. For a distributed IDS that is constructed without the
use of building blocks, we calculate therefore an overall effort
of Ed1 = 599× 2 = 1198.

In our actual development (with building blocks), we first
developed the IDS core model which has an overall complex-
ity of n = 174, as the sum of all building blocks in Tab. 1
implies. Since the Iterator with n = 22 can be reused, we
only count n = 152 for the IDS core model. During its de-
velopment both expert groups were involved, since the IDS
experts needed guidance with the design method initially
only known by the communication experts. This means an
overall effort for the IDS core model of Ec = 152× 2 = 304.
In order to add the distribution functionality to the IDS core
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Table 2: Metrics for the Distributed IDS Model

Distributed IDS [Fig. 6]
Reactive Buffer

Atomic Cluster Manager [Fig. 7]

Distribution Service
One
Load Monitoring

Component Monitor
Find Host With Minimal Load

Collected Group Response
Countdown

Router
Distribute Signature Parts

Iterator
Atomic Cluster

Security Event Listener
Pause Handler

Conf. Group Notif. [Fig. 8(a)]
Countdown

Move Handler [Fig. 8(b)]
Conf. Group Notif. [Fig. 8(a)]

Countdown

Building Block Complexity n

39
39

50
4

37
10
32
26
18
86
29
23
22
52
14
13
21
18
27
21
18

Reused

✓

Experts

✓

✓

✓
✓

✓

C

C

✓
I + C
I + C

I + C
I + C

C
C
C

C

✓

✓

C

599Total complexity

C

model, only the involvement of the communication experts
was needed. Furthermore, these experts did not have to build
the entire system with a total complexity of n = 599 from
scratch, but they could reuse building blocks from the exist-
ing libraries. The reused blocks from libraries added up to
a complexity of n = 187, which means about 31%. Since a
number of blocks could be taken from the IDS core model,
the extension only involved blocks with a total complexity of
n = 294.2 The complete effort for creating the distributed
system with building blocks can therefore be calculated as
Ed2 = Ec + 1× 294 = 598.

This means that the abstraction and reuse enabled by the
reactive and collaborative building blocks can reduce the
overall development effort by roughly 50%. Of course, these
numbers are an estimation, based on a simple complexity
metric introduced above. We argue, however, that the real
gains are even more substantial than the 50%. In the cal-
culation we have assigned both teams to the development of
the IDS core model. In reality, this was rather the team of
IDS experts together with one person familiar with SPACE,
which would further reduce the effort Ec and Ed2. One could
also argue that the effort from handling a building block with
complexity n is not proportional to n but rather polynomial,
which further increases the gains of reuse. In addition, our
calculation did not take into account the incremental verifi-
cation process. Since building blocks can be analyzed incre-
mentally, the verification is virtually starting with the first
blocks produced, and a high consistency throughout the en-
tire development process is achieved.

2These are all blocks in Tab. 2 that are created by the C-experts
only.

6 Related Work

The component-based engineering approach [BW96, RM01]
has been proposed to lower the effort in developing complex
systems. Such systems can be built from off-the-shelf com-
ponents and thus reducing the amount of time needed to cre-
ate new systems. Our method also utilizes reusable models
from the Arctis library that helps with the development of
complex, distributed systems. However in contrast to the
component-based approach, we use collaboration-oriented
models that explicitly specify the communication between
several components. This models encapsulate the collabora-
tive behavior patterns, such that they can handle the com-
plexity of coordinating distributed functions comfortably.

The aspect-oriented approach [KLM+97, CT04] is a rela-
tively new method to modularize the development of systems
that consist of intertwined aspects. The crosscutting con-
cerns of coordinating and management of distributing anal-
ysis tasks can be modeled as aspects which are woven into
the specification of basic IDS functionality resulting in the
distributed IDS design. However, the modifications caused
by the aspect weaving may introduce new unintended behav-
iors. In our approach such behaviors can be avoided due to
the complete, formal systems specification.

7 Final Remarks

In this paper we showed how to model a distributed and
load-balanced IDS based on EDL signatures by using the
collaboration-oriented SPACE method. This enabled us to
handle the complexity of coordinating the handover of anal-
ysis tasks by utilizing the hierarchical structure of SPACE
which specifies separate functions in different blocks. Fur-
thermore, reusable building blocks from our library helped
to cope with a fair number of communication and synchro-
nization problems without the need to create new models.
As shown in Sect. 5, this reduced the effort spent to design
a complex distributed system. In addition, only engineers
familiar with communication systems are needed during the
development of the distributed model, since all functions re-
lated to IDS can be reused from the model describing the
IDS core.

Besides the more general design properties described in
Sect. 5, other distributed IDS specific properties also need
to be checked. They can be stated as follows:

- All atomic cluster instances in all hosts are in state in-
active (see Fig. 5(b)), when a handover of analysis func-
tions is in progress.

- An EDL token is never routed to an inactive atomic
cluster instance.

- Only one move is in progress at a time.
- Every atomic cluster is assigned to at most one host at

all times.
- An atomic cluster is always eventually assigned to a

host.
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To verify also those properties, we currently extend our
tool-support enabling the developers to specify applica-
tion specific properties. Since the semantics of SPACE
is based on the compositional Temporal Logic of Actions
(cTLA) [HK00], we can further formulate and verify refine-
ment relations, as the one that the distributed IDS model
implements the model of the IDS core.

The distributed IDS model specified in Sect. 4 is created
under the ideal assumptions that the IDS hosts never crash
and messages are never lost. To ensure the dependability
of such a system we must take into account the properties
of the real execution environment. We plan to augment our
system design with fault-tolerance mechanisms, e.g. to avoid
system failures, even in the presence of errors like a crashed
host. However, such mechanisms may greatly increase the
complexity of the system, so that integrating them with the
existing design can introduce new design faults. Hence, it is
important to verify that the augmented system’s functional
properties are still fulfilled, both under ideal conditions and
in the presence of errors that we intend to tolerate. We plan
to achieve this by extending our verification approach (model
checking) to handle different types of more realistic execution
environment semantics.
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