Verification of xXUML Specifications
in the context of MDA

Glinter Graw*, Peter Herrmann?
'ARGE ISKV
2University of Dortmund
Emall: grawvg@gmx.de, herrmann@I| s4.cs.uni-dortmund.de

Abstract. This paper deals with the application of verification techniquesin the context of MDA. The main
emphasisison the UML profilexUML and on TLA based verification and specification methods.

Introduction

The MDA (Modd Driven Architecture) is the mogt recent initiative of the OMG to facilitate
the creation of object-oriented software. This gpproach has the goad to specify software for
different independent domains using abdtract high levdl modds. These high leve modes ae
specified uang the UML (Unified Moddling Language) as specification language, which is
another standard adopted by the OMG. The UML models are used as input for the generation
of code. MDA diginguishes two different kinds of models. platform specific models (PSM)
and platform independent moddls (PIM). In the last year UML semantics was extended by an
action specification language [AS01], which had the am to enrich the action semantics of the
UML. Actions of this language are declarative by nature. This result has been used to creste
the XUML (executable UML) profile [MB02] which supports the execution of UML models.
The semantics of UML is redricted in a cetan way in order to make UML modds
executable. Meanwhile several companies have created tools (eg., bridgepoint, iCCG) that
support the execution of XUML models.

Since severd criticiam to the semanticad precison of the UML exigts, many researchers have
proposed the combination of formad methods and UML modds which amed a the
formdisation of UML gpecifications and the verification of propeties of an UML
specification. Some of these forma methods are dso action based, in particular those that are
spoecification dyles and extendons of TLA (Tempord Logic of Actions) which was origindly
desgned by L. Lamport [L94] and offers a high potentid for the combinaion with xXUML
based action languages. Lamports method has been applied successfully so far in hardware
[YML99], controller [HKOOb] and protocol [HKOOa] design. An approach like MDA that is
based on the generation of code from abstract models requires a high degree of forma
correctness to be economical managesble. This pogtion paper discusses the reasons why
verification is necessary for XUML specifications and the fidds of application of formd
methods in the context of MDA based on xXUML.

Executable UML

Former versons of UML suffered from the decisve disadvantage that they were not
executable due to semantica incompleteness or ambiguities which have been discovered by
the members of the preciss UML group [pUML]. The reason for this was founded in an
extremdy limited set of actions which are send, call, return, create terminate destroy,
uninterpreted and local invocation actions. This led to an extenson of UML in late 2001 by
an action semantics. This actions semantics offers a complete set of actions a a high leve of
abdraction resulting in the crestion of a profile for the execution of UML specifications. Thus



XUML is a sangle language in the family of UML languages which semantics is described in a
forma manner usng a set of rules describing how paticular things in UML fit together to
form a profile that supports the execution of UML models [MB02]. A couple of UML'’s
former modd dements [UML] haven't changed so dradticdly in this profile and are ill part
of theXUML. Thee are;
Use Case diagrams which are used for the description of requirements in the early phase
of requirements engineering. The modd dements of this kind of diagram are actors, use
cases and their according relations.
Sequence diagrams which might be used to specify the interaction of use case objects
and the actors related to use cases using communicates relationships.
Class diagrams describing the datic sructure of XUML objects, their attributes, and
operations as well as ther relationships. Because the focus is on dynamic aspects, it is no
more necessary to digtinguish aggregation and compodtion in associaions. Now there
ae additiond object and attribute actions as wel as link actions. These specify the
cregtion of object instances, the assignment of values to object attributes as well as the
cregtion of links between object instances which have been specified as associations in
the class diagram
Statechart diagrams specify behaviourad aspects object instances belonging to the same
class. These conss ill of pseudodtates, states and trangtions (based on Event[Guard
Condition]/Action semantics), specifying the behaviour and lifecycle of object instances,
but the kind of actions that can be used as entry or exit actions of states as well as the
kinds of actions that might be used in trandtions to specify the dynamics of date changes
are dragtically enriched by the action semantics and are explained in [AS01].
Collaboration diagrams are used to modd the interaction of objects using messages.
Moreover OCL congraints which have the character of rules can be written in an action
language and thus can redtrict the vaue of attributes and associations in an XUML modd.
There are trand ations defined between OCL congtraints and action languages [MBO02].
Component and deployment diagrams whose main emphasis is on the description of structura
and datic model dements in late phases of the software development process don't have any
influence in XUML and aren't subject to deeper condderation, because they are in strong
contact to the implementation platform.
Currently there exis severd action languages of different vendors which have ther roots in
the actions semantics (e.g, the ones described in [MBO02] and [KCO02]), but the standardisation
process, however isaready in progress.

Executable UML in the context of MDA

In the indudtrid practice as software architect one of our authors daly sees that the firgt
phases of curent object-oriented software processes especidly Object Oriented Anadyss
(OOA) auffer from severd problems. In severa internationd projects in which software for
the domain of hedth insurance is developed, UML 1.3 is used. OOA is performed identifying
classes and ther rdationships from use cases and their descriptions. Statechart diagrams are
sdldom used to specify the behaviour of very important classes. Also interaction diagrams
have no big importance in many projects during this phase. Although this approach correlates
with the usage of an ingant UML core this fact leads to the following shortcomings
concerning the artefacts produced in the phase of OOA:
Only analyss classes and ther reationships are taken into account and in most of the
casss ther behaviour is neglected. It would not be fair to blame the business anayds for
the shortcomings of their work because some months ago there was no chance to execute
an UML modd from this phase of the software process at all.



Behaviourd andysis in OOA artefacts is incomplete, inconsstent or is not consdered at
dl. The desgner in Object Oriented Desgn (OOD) is lucky if the andyds modd is
provided with some businessrules.

Due to this absence of formdity in OOA modds, the desgner has to rethink andyss
decisons. The tracking of decisons which lead to an OOA modd are difficult to trace
back, because the designer sees only the class diagram and the use case descriptions based
on textud templaies. Therés a lot of communication overhead between business anaysts
and desgners

The review of OOA artefacts peformed by members of a quality assurance team is
difficut and sometimes a nightmare because of its ineffectiveness Thus there is no
effective way to restrict or a least reduce the propagation of andyds errors and
inconsstencies into the subsequent phases of OOD and Object Oriented Programming
(OOP).

The boundaries between OOA and OOD [SPHGJX01] are not clearly defined. This leads to
frequent changes in OOD. It's not clear if a busness object can be taken over from
andysis to design without changes or if it has to be refined with other objects, transformed
into other design objects using splits or compostions.

All these reasons lead to frequent iterations between severad people working in different
phases resulting in high economic efforts.

To understand and estimate the consequences of these problems it is necessary for the reader
to know that OOA and OOD are often peformed by busness andysts and designers of
different companies which means that artefacts are exchanged between different companies
crossing the boundaries of different companies. Moreover a typicd project for hedth
insurance has a minimum 800 business objects. This combination of problems and risks has
resulted in difficultiesin particular for big projects.

It is the am of OMG MDA initidtive to overcome these deficiencies by the separation of an
architecture for software systems into platform independent modes (PIM) and platform
ecific modds (PSM). In the PIM dl andyss rdevant and a couple of design reevant
models are concentrated [OOA]. Moreover the early consderation of aspects of system
integration is proposed. The PSM deds with the redisation of the PIM on a particular
computing platform.

Once the PIM modds are specified in XUML, there are stronger completion criteria which are
fulfilled if a PIM mode executes correctly. Furthermore these completion criteria engble the
effective reviews for members of a qudity assurance team which leads to an increased qudity
of platform independent models. The idea is tha validation (which has the character of a
smulation) and verification of models sat in early phases of the software process. Thus the
propagation of errors and inconsstencies to subsequent phases can be redtricted. Tools that
support the execution of PIM modes specified in XUML help business anadyds to integrate
behaviourd aspects in ther specification and give them an impresson of the correctness of
their models.

Furthermore it is recognised that a refinement relation between PIM and PSM exidts that is
expressed by the application of a mapping. MDA clams that if the PIM and the mapping are
defined with high precison the PIM to PSM mapping may be fully automated, which requires
the formalisation of properties. Usng mappings for code generation of the PIM results in
reduced codsts, because the PSM and the plaform specific implementation (PSI) are not
products that underlie maintenance which has its reason in the automatic generation.



\

Formalized
models

W PIM

Plattform-
Specific

Build & Test
xUML modds
using a xXUML
tool

Application of
patternsto

PIM using CCG

Plattform
specific Design

implementation

and
A implementaion | ]
patterns

\ /

Figure 1: PIM to PSM Mapping

A configurable code generator (CCG in [KCO01], [KCO02]) or model compiler [MBOQ2] is used
to generate the platform specific implementation which gets the PIM platform specific design
and implementation patterns as input. The reationships between platform independent models
and plaform specific desgn and implementation paiterns is depicted in Figure 1. The
prerequiste for the generation of a correct plaform specific implementation are correct
models and correct mappings. Unfortunatdly, XUML lacks proof rules which are required to
peform an dffective verification. In the following sections a forma method will be
introduced that hel ps to guarantee the correctness of models and mappings.

The compositional specification style cTLA

The specification style cTLA [HKOO4 is based on L. Lamport's Tempord Logic of Actions
(TLA) [L94] and supports the definition of parameterised processes and system types. A
specification of a smple process or a (sub)system is crested by the ingantiation of a cTLA
process type. As in the forma description language Lotos systems are composed from
processes which interact by the means of joint actions.

Process Sensor Obj ect (naxVal ue : | nteger)
Vari abl es
QU : Queue ; (* nmessage queue *)
Value : Real ; (* Sensor val ue *)
State : (“init”, “called’, “processed”, “returned”)
INNT ==
QU = << >> /\
State = “Init” [\
Value = 0
ACTI ONS
get ValueCall (val : Real) == (*send action*)
Val ue < nmaxVal ue I\
State = “call ed” /\
State’ = “returned” /\
Val ue = val I\
Unchanged qu /\

Unchanged Val ue;



Calibrate() == (*computation action?*)

Val ue > maxVal ue I\
Val ue’ = Val ue/ 2 I\
Unchanged qu /\

Unchanged St ate;
End;

Figure 2: cTLA process Sensor Object

As an example of a cTLA process we outline the process SensorObject in Fgure 2 describing
the behaviour of an UML object. In the process type header the name SensorObject and the
process parameters are declared. The dtate variables state, qu and value modd the process
date. The st of the initid setting is described by the predicate INIT. State trandtions are
specified by means of actions A TLA action (eg. getValueCall) is a predicate about action
parameters, state variables describing the state before the execution of the action and so-caled
primed date variables moddling the dae after executing the action. Beddes of date
trangtions gpecified by actions, a process may peform duttering steps where it does not
change its state whereas the process environment performs a Sate trangtion.

The cTLA process SensorObject describes safety properties. It is adso possble to specify
liveness and red-time condraints by the use of additiond wesk or strong fairness or red-time
condraints which are able to force the execution of an action. A far action has to execute
eventudly only if otherwise infinitdy many daes exig where the action is endbled as well as
its execution is tolerated by the environment. Systems and subsystems are described as
compogitions of concurrent processes which encgpsulate their state variables and change their
locd sates according to the process actions. The vector of process state variables represent
the date of the entire system. System date trandtions are described by system actions which
are logical conjuncts of process actions and process duttering steps. Since each process
contributes to each system actions by exactly one action or a Suttering step, concurrency is
modelled by interleaving and the coupling of processes by joint actions The action
parameters are used to describe data transfer between processes. In Figure 3 the CTLA process
abstractComposition specifying a controller subsystem is depicted. The subsystem conssts of
three processes describing a sensor object SO modelling a sensor, an actor object modelling
an actor and atask object

PROCESS abstract Conposition
PROCESSES

SO : Sensor bj ect;

AO : Actorject;

TO : Tasknj ect;

ACTI ONS

Val ueToSensor(value : Real) == SO getValueCall(value) /\ AO Stutter /\
TO. enqueue(val ue);

SensorCalibrate == SO Calibrate /\ AO Stutter /\ TO Stutter;

ActorCalibrate == SO Stutter /\ AO. Calibrate /\ TO Stutter;

END abstract Conposition

Figure 3: A cTLA process describing a subsystem



modelling a task. The system actions ValueToSensor, SensorCalibrate and ActorCalibrate are
defined. The system action ValueToSensor modes the interchange of a message between a
SensorObject and a TaskObject. It is enabled to be executed if the action getValueCall of the
process SO and the action enqueue of the process TO are enabled. If it is executed the process
TO will perform a duttering sep. The system actions SensorCalibrate and ActorCalibrate
cause no interaction with foreign processes.

Moreover CTLA facilitates the combination of different property types like safety and
liveness. In the condraint oriented specification style one can specify different aspects of a
component by separate constraint processes.

The specification style cTLA has interesting properties concerning the specification of the
datecharts of object indances as well as the gspecification of collaborations which are
trandated into separate CTLA processes modding date trangtion sysems. Since CTLA is
based on TLA tha supports predicate logic as wel as tempora logic it is aso posshble to
trandate most of the OCL expressons. Furthermore XUML actions are easy to trandate in
most of the cases.

Like TLA the specification style cTLA supports safety, liveness and refinement proofs by the
ad of saverd proof rules of tempord logic. The refinement of specifications on different
levels of abdraction is proved usng implication. To perform a refinement proof a refinement
mapping has to be comgtructed. Moreover tools exist that support the trandation of a
specification which is composed of several CTLA processes into one CTLA process. Proofs
can be peformed manudly or by the ad of the modd checker TLC (Tempord Logic
Checker) [YML99], [LO2] which ddivers interesting results up to a redricted complexity of a
specification. Because CTLA is compodtiond it is possble to construct subsystems which
contain only the interesting processes of a specification (e.g., an OOA or OOD modéd!).

In former research [GHK99], [GHKOQ] it was shown that cTLA is a suitable language for the
specification and the verification of the behaviour and the properties of the object instances of
andysis and design patterns.

Verification support for MDA

In this section interesting points where verification using cTLA is able to support xUML

moddsin the MDA context will be identified.

As dated in [SBKO1] the moddling and testing of OOA modd using an early verson of
XUML of the Bridgepoint tool for smulation in XUML was successful and a couple of errors
were found, but nevertheess a formd verification usng the COSPAN modd checker found
additiond serious erors. Thus a formd verification of the OOA modd was hepful in the
development of the control software of arobot.

To peform the trandation of an XUML mode into a cTLA modd a XUML/CTLA trandator is
currently under development, which accepts XUML modds with according XUML action
specifications as input. The modd trandator will generate a CTLA specification as output. The
output is used for the manua verification of properties or the automatic verification using the
model checker TLC [L02] supporting a subset of TLA+ as input language. TLA+ is a formd
specification language based on TLA supporting severd tools. For some kinds of verification
(e.g. rea-time properties) the manua veification is less time consuming in CTLA. Figure 4
presents an overview of the XUML/CTLA modd trandator. The fact that XUML and TLA are
action based facilitates the construction of a modd trandator. Figure 4 includes an additiond
property editor, which supports the specification of properties for verification purposes (e.g.,
safety properties. is a certain date reachable a dl, or liveness properties. are there traces that
certan dates are never reeched or are there infinite cycles). These forma verifications are
much more complete and show incondstencies with more rigor than vdiddions usng a
smulator with extensve test cases are able to show.

6



To transform a specification it is required that the following XUML diagrams are pecified:

One or many interaction diagrams which consst of objects, links connecting the objects
and messages interchanged between objects. It is assumed that every object has a unique
identifier and the class nameis specified.

A class diagram which consss of classes and associations. For every object of the
interaction diagram an according class has to be specified in this diagram defining the
names and types of class attributes and the signatures of operations.

Furthermore a statechart diagram has to be specified for every class of the class diagram
which describes the behaviour of a class. In a statechart diagram dtates and trangtions are
specified. It is assumed that a trandtion conssts of an event, an action, and a guard.
Moreover the trangtion has a source and a target state. Thus trangtions are redtricted in a
way that they may have only one action. If trangtions with sequences of actions are
required, intermediate states containing thelr own trangtions have to be introduced. Each
trangtion caries its own action. The syntax of CTLA is used for action specifications
preserving as much from the bridgepoint ASL as possble There are a couple of
smilarities between both languages. Congants are specified as CTLA congants. Boolean
expressons have their counterparts in CTLA Boolean expressons. Arithmetic expressons
are trandated into arithmetic expressons of cTLA. Conditionad condructs like IF-THEN-
ELSE and SWITCH are trandated into the IF-THEN-ELSE and CASE congtructs of
CTLA. Loops seem to be problematic, since there is no corresponding construct in CTLA.
Loop variables are transformed into process variables and loop conditions are transformed
into preconditions of a CTLA action. Assgnments of vaues to variables are handled using
primed variables of cTLA.

The modd trandator transforms each class and its according dSatechart diagram into a
Separate CTLA process with local date variables and actions. Class attributes are transformed
into the dtates variables of the CTLA process. An additiond variable state keeping the name of
the current state of the statechart is introduced in every cTLA process of a class. Moreover a
queue qu moddling the queue of the datechart is added. The statechart diagram is used to
generate the initid predicate and the actions of this cTLA process. The trandformation of a
trangtion of the statechart diagram is done generating a CTLA action. The precondition of this
action congsts of the guard condition expressed in CTLA, the varidble state holding the vaue
of the current state and the event being enqueued as head of the queue qu. Furthermore State
trangtions have to be added trandforming the XxUML ection of the trandtion have to be
generated. Every ASL datement is trandformed into a conjunct of a TLA action. Additiondly
a dae trandtion specifying the trandtion into the next date of the datechart is added.
Furthermore there are actions which are responsible for enqueuing and dequeuing of events
into the queue.

The interaction diagram is used for the generation of a CTLA process describing a subsystem
usng the CTLA processes bedonging to classes of objects in the interaction diagram. Each
message which is interchanged between objects of the interaction diagram is transformed into
a system action conjoining a send or a Sgnd or a return action of an object sending a message
with an action which is responsble for the enqueuing and dequeuing of events into the queue
of another object receiving the message.

The tool Rationd Rose is used to mode the UML diagrams. It can be extended using the
soripting language Rosescript. Scripts for the specifications of XUML actions and properties
on the base of didogs have been developed. These properties are verified by the mode
checker TLC or by the ad of manud proofs. Furthermore the XUML/CTLA modd trandator
is developed using Rosescript. During the transformation of a XUML specification the mode



trandator accesses the repostory of Rationd Rose to retrieve information about the XUML
models.

To generate a flat cTLA specification which is usable as input for TLC, a tool cdled cTc
[HMK96] is agpplied. This tool gets a CTLA gpecification conssing of severa CTLA
processes as input and generates one CTLA process describing the behaviour of al composed
CTLA processes.

Finaly some minor transformations have to be done to use this cTLA process as input for
TLC. Udng these tools the tedious work of manud trandformations of XUML specifications
into CTLA specifications is reduced.

A couple of people (see eg., [D0O1]) have recognised that XUML will enforce the development
of severd kinds of patterns. To reduce the effort, which is necessary to create formdised
OOA modéds it is promising to create formalised libraries of domain dependent prefabricated
andysis paterns [F97]. Thus the reusability of forma specifications is increased. In [GHKOQ]
an example for the formaisation of an andyss pattern for red-time software is shown.

Property
editor
g U
XUML model N Lo
with XUML/CTLA Specification model

ASL actions, as
far aspossible
structured into

including checker
TLA+Actions& [P
input for manual

model translator
& cTc

patterns

proofs

N

Figure 4: Compilation of XUML modelsfor the purpose of verification

Of course, these ideas can be applied to the formalisation of platform specific OOD peatterns
aswell.

Now the verification of PIM to PSM mepping rules should be consdered. In [DO1] a
overview of architecture and its reaionships towards refinement and architecturd gsyle is
given. Dedgning a software sysem is in drong relaion with refinement, because refinement
describes the relationship between a specification including the functiond as wel as the non
functiona requirements and the design, which is sdected to give a solution to the functiond
and non functiona requirements. Moreover it is necessary to know tha architectura syle
defines the gpecification and design language which has condraining effects on the
refinement mapping. A spectrum of architectura dyles exig for MDA, but especidly two
architecturd syles are interesting which can be composed to build amodd compiler:

1. An achitecturd gyle that defines a full trandation scheme which means that the
achitectura gyle is fully determined and is essentidly a compiler that supports an automatic
trandation from the specification to the redization. In this case the correctness of the
refinement is based in the function of the compiler. We do not believe that many of these
dyles exigt because recent software sysems ae influenced by many non-functiond
requirements. A liging of these nonfunctiona requirements would include a least red-time,
performance, fault-tolerance, security, distribution, scaability. Due to this complexity of non
functiona requirements, we do not believe that this approach works for many domains. Most
of the modd compilers currently avalable have few possbiliies for parameterisation.
Nevertheless the correctness of the compiler should be proven using formal methods.

8



2. An architecturd style defining the language for the specification and the design. Of course,
the specification should include the functiond and non-functiond requirements again.
Furthermore a couple of well-defined rules exist that help to check whether the redlization
maps to the specification. A verification tool should support the design process to check the
design for correctness. In our opinion this architecturd style appears more frequently. We
would use the structure of the domain for the verification of the correctness of a refinement
mapping. Thetriple of an analys's pattern, the non-functiona requirement and the
architecturd rulesform the basis for the selection of design patterns. The verification of the
refinement relationships between the analyss pattern and the selected design patterns leads to
the introduction of so caled refinement patterns. The correctness of the refinement mapping
of each refinement pattern is verified separately with extensive tool support of a model
checker. Furthermore domain dependent collections of refinement patterns can be formed
accumulating the design experiences for a certain domain. Refinement paiterns with formaly
verified correctness should provide optima input for amodel compiler and till have to be
parameterised to generate platform specific code. Currently we have modelled some
refinement patterns for the domain of control software.

Conclusion

We presented a method to verify XUML specifications in the context of MDA formally by
means of CTLA and modd checking. Up to now two XUML specifications describing
controllers for digtributed control software were transformed into CTLA processes. Invariance
and refinement properties were verified for these specifications using the mode checker TLC.
Although these verifications are restricted by the state explosion problem our results seem to
be promising. Future work will concentrate on the development and improvement of model
trandators and mode compilers supporting the verification and the generation of correct code.
It is planned to adapt our transformation tool to the upcoming ASL standard.

References

[AS01] Action Semantics for the UML, http://iwww.kc.com/as_sitelhome.html, 2001.

[DO1] Desmond D'Souzas OMG's MDA An Architecture for Modding,
http://Mmww.omg.org/mdalpresentations.htm.

[FO97] Martin Fowler: Analysis Patterns, Addison-Wesley, 1994.

[GHK99] Glinter Graw, Peter Herrmann, Heiko Krumm: Congtraint-Oriented Formal
Modelling of OO-Systems, in L. Kutvonen, H. Kénig, and M. Tienari(eds)), in 2" Int.
Working Conf. on Digtributed Applications and Interoperable Systems (DAIS 99), Kluwer
Academic Publisher, 1999, pp. 345-358.

[GHKOQ] Gunter Graw, Peter Herrmann, Heiko Krumm: Verification of UML based red-time
systems designs by means of cTLA+, in 2" |EEE International Symposion on Object-oriented
Real-time distributed computing(ISORC 2000), | EEE Computer Science Press, Los Angeles,
2000, pp. 86-95.

[L94] Ledie Lamport: The tempord Logic of Actions, ACM Transactions on Programminng
Languages and Systems, val. 16, no. 3, pp. 872-923, 1994.

[LO2] Ledie Lamport: Specifying Systems, hitp:/iwww.lamport.org, 2002.

[KCO1] http://www.kc.com/as sitelhome.html, 2001.

[KCO2] http:/Mmwww.ke.com/cgi-bin/downl oad.cgi ?action=ctn/CTN_06v2_5h.pdf.

[HMK96] Carsten Heyl, Arnulf Mester, Hetko Krumm: cTc atool supporting the construction
of CTLA specifications, T. Magariaand B. Steffen editors, Proceedings of the TACAS-96,
LNCS 1055, Springer, 1996, pp. 407-411.



[HKOOg] P. Herrmann, H. Krumm: A framework for modeing transfer protocols, Computer
Networks, Volume 34, Nr. 2, 2000, pp. 317-337.

[HKOOb] P. Herrmann, H. Krumm: A framework for the hazard andysis of chemicd plants,
Proceedings op the 11" |EEE International Symposium on Compuiter aided control system
design (CAASD2000), IEEE CSS, Anchorage, omnipress 2000, pp. 35-41.

[MBO02] Stephen J. Mdlor, Marc J. Balcer: Executable UML, Addison-Wedey, 2002.
[OAL] Brigepoint OAL, hitp://mwww.projtech.com/pdfs/bp/od.pdf.

[OOA] Brigepoint OOA, http://www.projtech.com/pdfs/bp/ooa.pdf.

[PUML] http:/Amnww.puml.org.

[SPHGJ01] Gerson Sunyé, Frangois Pennaneac’ h, Wai-Ming Ho, Allain Le Guennec, Jean
Marc Jezéqud: Usng UML Action Semantics for Executable Modding and Beyound, 2001.
[SBKO1] Natasha Sharygina, James C. Brown an Robert Kurshan: Forma Object-Oriented
Andyssfor Software Religbility: Design for Verification,

http:/AMww. cs.texas.edu/users/browne/NewPapers/FA SE20011. pdf, 2001.

[UML] UML Metamodd Verson 1.4, http:/mww.omg.org/uml.

[YML99] Yuan Y u, Panagiotis Manalios, Ledie Lamport Model Checking TLA+
Specifications, in Correct Hardware Design and Verification Methods (CHARME '99),
Laurence Pierre and Thomas Kropf editors, LNCS 1703, Springer-Verlag, 1999, pp. 54-66.

10



