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Abstract. This paper deals with the application of verification techniques in the context of MDA. The main 
emphasis is on the UML profile xUML and on TLA based verification and specification methods. 

Introduction 
The MDA (Model Driven Architecture) is the most recent initiative of the OMG to facilitate 
the creation of object-oriented software. This approach has the goal to specify software for 
different independent domains using abstract high level models. These high level models are 
specified using the UML (Unified Modelling Language) as specification language, which is 
another standard adopted by the OMG. The UML models are used as input for the generation 
of code. MDA distinguishes two different kinds of models: platform specific models (PSM) 
and platform independent models (PIM). In the last year UML semantics was extended by an 
action specification language [AS01], which had the aim to enrich the action semantics of the 
UML. Actions of this language are declarative by nature. This result has been used to create 
the xUML (executable UML) profile [MB02] which supports the execution of UML models. 
The semantics of UML is restricted in a certain way in order to make UML models 
executable. Meanwhile several companies have created tools (e.g., bridgepoint, iCCG) that 
support the execution of  xUML models.  
Since several criticism to the semantical precision of the UML exists, many researchers have 
proposed the combination of formal methods and UML models which aimed at the 
formalisation of UML specifications and the verification of properties of an UML 
specification. Some of these formal methods are also action based, in particular those that are 
specification styles and extensions of TLA (Temporal Logic of Actions) which was originally 
designed by L. Lamport [L94] and offers a high potential  for the combination with xUML 
based action languages. Lamports method has been applied successfully so far in hardware 
[YML99], controller [HK00b] and protocol [HK00a] design. An approach like MDA that is 
based on the generation of code from abstract models requires a high degree of formal 
correctness to be economical manageable. This position paper discusses the reasons why 
verification is necessary for xUML specifications and the fields of application of formal 
methods in the context of MDA based on xUML.  
 

Executable UML 
Former versions of UML suffered from the decisive disadvantage that they were not 
executable due to semantical incompleteness or ambiguities which have been discovered by 
the members of the precise UML group [pUML]. The reason for this was founded in an 
extremely limited set of actions which are send, call, return, create, terminate, destroy, 
uninterpreted and local invocation actions. This led to an extension of UML in late 2001 by 
an action semantics. This actions semantics offers a complete set of actions at a high level of 
abstraction resulting in the creation of a profile for the execution of UML specifications. Thus 
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xUML is a single language in the family of UML languages which semantics is described in a 
formal manner using a set of rules describing how particular things in UML fit together to 
form a profile that supports the execution of UML models [MB02]. A couple of UML’s 
former model elements [UML] haven’t changed so drastically in this profile and are still part 
of the xUML. These are: 
• Use Case diagrams which are used for the description of requirements in the early phase 

of requirements engineering. The model elements of this kind of diagram are actors, use 
cases and their according relations.  

• Sequence diagrams which might be used to specify the interaction of use case objects 
and the actors related to use cases using communicates relationships.  

• Class diagrams describing the static structure of xUML objects, their attributes, and 
operations as well as their relationships. Because the focus is on dynamic aspects, it is no 
more necessary to distinguish aggregation and composition in associations. Now there 
are additional object and attribute actions as well as link actions. These specify the 
creation of object instances, the assignment of values to object attributes as well as the 
creation of links between object instances which have been specified as associations in 
the class diagram. 

• Statechart diagrams specify behavioural aspects object instances belonging to the same 
class. These consist still of pseudostates, states and transitions (based on Event[Guard 
Condition]/Action semantics), specifying the behaviour and lifecycle of object instances, 
but the kind of actions that can be used as entry or exit actions of states as well as the 
kinds of actions that might be used in transitions to specify the dynamics of state changes 
are drastically enriched by the action semantics and are explained in [AS01]. 

• Collaboration diagrams are used to model the interaction of objects using messages. 
• Moreover OCL constraints which have the character of rules can be written in an action 

language and thus can restrict the value of attributes and associations in an xUML model. 
There are translations defined between OCL constraints and action languages [MB02]. 

Component and deployment diagrams whose main emphasis is on the description of structural 
and static model elements in late phases of  the software development process don’t have any 
influence in xUML and aren’t subject to deeper consideration, because they are in strong 
contact to the implementation platform. 
Currently there exist several action languages of different vendors which have their roots in 
the actions semantics (e.g., the ones described in [MB02] and [KC02]), but the standardisation 
process, however is already in progress.  
  

Executable UML in the context of MDA 
In the industrial practice as software architect one of our authors daily sees that the first 
phases of current object-oriented software processes especially Object Oriented Analysis 
(OOA) suffer from several problems. In several international projects in which software for 
the domain of health insurance is developed, UML 1.3 is used. OOA is performed identifying 
classes and their relationships from use cases and their descriptions. Statechart diagrams are 
seldom used to specify the behaviour of very important classes. Also interaction diagrams 
have no big importance in many projects during this phase. Although this approach correlates 
with the usage of an instant UML core this fact leads to the following shortcomings 
concerning the artefacts produced in the phase of OOA:   
• Only analysis classes and their relationships are taken into account and in most of the 

cases their behaviour is neglected. It would not be fair to blame the business analysts for 
the shortcomings of their work because some months ago there was no chance to execute 
an UML model from this phase of the software process at all.  
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• Behavioural analysis in OOA artefacts is incomplete, inconsistent or is not considered at 
all. The designer in Object Oriented Design (OOD) is lucky if the analysis model is 
provided with some business rules.  

• Due to this absence of formality in OOA models, the designer has to rethink analysis 
decisions. The tracking of decisions which lead to an OOA model are difficult to trace 
back, because the designer sees only the class diagram and the use case descriptions based 
on textual templates. There’s a lot of communication overhead between business analysts 
and designers 

• The review of OOA artefacts performed by members of a quality assurance team is 
difficult and sometimes a nightmare because of its ineffectiveness. Thus there is no 
effective way to restrict or at least reduce the propagation of analysis errors and 
inconsistencies into the subsequent phases of OOD and Object Oriented Programming 
(OOP).  

• The boundaries between OOA and OOD [SPHGJ01] are not clearly defined. This leads to 
frequent changes in OOD. It’s not clear if a business object can be taken over from 
analysis to design without changes or if it has to be refined with other objects, transformed 
into other design objects using splits or compositions. 

 
All these reasons lead to frequent iterations between several people working in different 
phases resulting in high economic efforts. 
To understand and estimate the consequences of these problems it is necessary for the reader 
to know that OOA and OOD are often performed by business analysts and designers of 
different companies which means that artefacts are exchanged between different companies 
crossing the boundaries of different companies. Moreover a typical project for health 
insurance has at minimum 800 business objects. This combination of problems and risks has 
resulted in difficulties in particular for big projects. 
It is the aim of OMG MDA initiative to overcome these deficiencies by the separation of an 
architecture for software systems into platform independent models (PIM) and platform 
specific models (PSM). In the PIM all analysis relevant and a couple of design relevant 
models are concentrated [OOA]. Moreover the early consideration of aspects of system 
integration is proposed. The PSM deals with the realisation of the PIM on a particular 
computing platform.  
Once the PIM models are specified in xUML, there are stronger completion criteria which are 
fulfilled if a PIM model executes correctly. Furthermore these completion criteria enable the 
effective reviews for members of a quality assurance team which leads to an increased quality 
of platform independent models. The idea is that validation (which has the character of a 
simulation) and verification of models start in early phases of the software process. Thus the 
propagation of errors and inconsistencies to subsequent phases can be restricted. Tools that 
support the execution of PIM models specified in xUML help business analysts to integrate 
behavioural aspects in their specification and give them an impression of the correctness of 
their models. 
Furthermore it is recognised that a refinement relation between PIM and PSM exists that is 
expressed by the application of a mapping.  MDA claims that if the PIM and the mapping are 
defined with high precision the PIM to PSM mapping may be fully automated, which requires 
the formalisation of properties. Using mappings for code generation of the PIM results in 
reduced costs, because the PSM and the platform specific implementation (PSI) are not 
products that underlie maintenance which has its reason in the automatic generation.  



 4

 

 

 

 

 

 

 

 

 

 Figure 1: PIM to PSM Mapping 

 
A configurable code generator (CCG in [KC01], [KC02]) or model compiler [MB02] is used 
to generate the platform specific implementation which gets the PIM platform specific design 
and implementation patterns as input. The relationships between platform independent models 
and platform specific design and implementation patterns is depicted in Figure 1. The 
prerequisite for the generation of a correct platform specific implementation are correct 
models and correct mappings. Unfortunately, xUML lacks proof rules which are required to 
perform an effective verification. In the following sections a formal method will be 
introduced that helps to guarantee the correctness of models and mappings.  

The compositional specification style cTLA 
The specification style cTLA [HK00a] is based on L. Lamport’s Temporal Logic of Actions 
(TLA) [L94] and supports the definition of parameterised processes and system types.  A 
specification of a simple process or a (sub)system is created by the instantiation of a cTLA 
process type. As in the formal description language Lotos systems are composed from 
processes which interact by the means of joint actions. 
 
Process SensorObject(maxValue : Integer) 
Variables 
 Qu : Queue ; (* message queue *) 
 Value : Real ; (* Sensor value *) 
 State : (“init”, “called”, “processed”, “returned”) 
 
INIT == 
 Qu = << >>      /\ 
 State = “Init”  /\ 
 Value = 0 
ACTIONS 
 getValueCall(val : Real) == (*send action*) 
  Value < maxValue    /\ 
  State = “called”    /\ 
  State’ = “returned” /\ 
  Value = val         /\ 
  Unchanged qu        /\ 
  Unchanged Value; 

Formalized       
models 

Build & Test 
xUML models 
using a xUML 
tool 

Application of 
patterns to        
PIM using CCG 

      PIM 

Plattform 
specific Design 
and 
implementaion 
patterns 

Plattform-
Specific 
implementation 
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      Calibrate() == (*computation action*) 
  Value > maxValue    /\ 
  Value’ = Value/2    /\ 
  Unchanged qu        /\ 
            Unchanged State; 
End; 

Figure 2: cTLA process SensorObject          

As an example of a cTLA process we outline the process SensorObject in Figure 2 describing 
the behaviour of an UML object. In the process type header the name SensorObject and the 
process parameters are declared. The state variables state, qu and value model the process 
state. The set of the initial setting is described by the predicate INIT. State transitions are 
specified by means of actions. A TLA action (e.g. getValueCall) is a predicate about action 
parameters, state variables describing the state before the execution of the action and so-called 
primed state variables modelling the state after executing the action. Besides of state 
transitions specified by actions, a process may perform stuttering steps where it does not 
change its state whereas the process environment performs a state transition.  
The cTLA process SensorObject describes safety properties. It is also possible to specify 
liveness and real-time constraints by the use of additional weak or strong fairness or real-time 
constraints which are able to force the execution of an action. A fair action has to execute 
eventually only if otherwise infinitely many states exist where the action is enabled as well as 
its execution is tolerated by the environment. Systems and subsystems are described as 
compositions of concurrent processes which encapsulate their state variables and change their 
local states according to the process actions. The vector of process state variables represent 
the state of the entire system. System state transitions are described by system actions which 
are logical conjuncts of process actions and process stuttering steps. Since each process 
contributes to each system actions by exactly one action or a stuttering step, concurrency is 
modelled by interleaving and the coupling of processes by joint actions. The action 
parameters are used to describe data transfer between processes. In Figure 3 the cTLA process 
abstractComposition specifying a controller subsystem is depicted. The subsystem consists of 
three processes describing a sensor object SO modelling a sensor, an actor object modelling 
an actor and a task object  
 
PROCESS abstractComposition 
PROCESSES 
SO : SensorObject; 
AO : ActorObject; 
TO : TaskObject; 
 
ACTIONS 
 
ValueToSensor(value : Real) == SO.getValueCall(value) /\ AO.Stutter /\ 
TO.enqueue(value); 
 
SensorCalibrate == SO.Calibrate /\ AO.Stutter /\ TO.Stutter; 
 
ActorCalibrate == SO.Stutter /\ AO.Calibrate /\ TO.Stutter; 
 
. . .  
END abstractComposition 

 

Figure 3: A cTLA process describing a subsystem  
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modelling a task. The system actions ValueToSensor, SensorCalibrate and ActorCalibrate are 
defined. The system action ValueToSensor models the interchange of a message between a 
SensorObject and a TaskObject. It is enabled to be executed if the action getValueCall of the 
process SO and the action enqueue of the process TO are enabled. If it is executed the process 
TO will perform a stuttering step. The system actions SensorCalibrate  and ActorCalibrate 
cause no interaction with foreign processes. 
Moreover cTLA facilitates the combination of different property types like safety and 
liveness. In the constraint oriented specification style one can specify different aspects of a 
component by separate constraint processes. 
The specification style cTLA has interesting properties concerning the specification of the 
statecharts of object instances as well as the specification of collaborations which are 
translated into separate cTLA processes modeling state transition systems. Since cTLA is 
based on TLA that supports predicate logic as well as temporal logic it is also possible to 
translate most of the OCL expressions. Furthermore xUML actions are easy to translate in 
most of the cases.  
Like TLA the specification style cTLA supports safety, liveness and refinement proofs by the 
aid of several proof rules of temporal logic. The refinement of specifications on different 
levels of abstraction is proved using implication. To perform a refinement proof a refinement 
mapping has to be constructed. Moreover tools exist that support the translation of a 
specification which is composed of several cTLA processes into one cTLA process. Proofs 
can be performed manually or by the aid of the model checker TLC (Temporal Logic 
Checker) [YML99], [L02] which delivers interesting results up to a restricted complexity of a 
specification. Because cTLA is compositional it is possible to construct subsystems which 
contain only the interesting processes of a specification (e.g., an OOA or OOD model).   
In former research [GHK99], [GHK00] it was shown that cTLA is a suitable language for the 
specification and the verification of the behaviour and the properties of the object instances of 
analysis and design patterns. 
 

Verification support for MDA 
In this section interesting points where verification using cTLA is able to support xUML 
models in the MDA context will be identified. 
As stated in [SBK01] the modelling and testing of OOA model using an early version of 
xUML of the Bridgepoint tool for simulation in xUML was successful and a couple of errors 
were found, but nevertheless a formal verification using the COSPAN model checker found 
additional serious errors. Thus a formal verification of the OOA model was helpful in the 
development of the control software of a robot. 
To perform the translation of an xUML model into a cTLA model a xUML/cTLA translator is 
currently under development, which accepts xUML models with according xUML action 
specifications as input. The model translator will generate a cTLA specification as output. The 
output is used for the manual verification of properties or the automatic verification using the 
model checker TLC [L02] supporting a subset of TLA+ as input language. TLA+ is a formal 
specification language based on TLA supporting several tools. For some kinds of verification 
(e.g. real-time properties) the manual verification is less time consuming in cTLA. Figure 4 
presents an overview of the xUML/cTLA model translator. The fact that xUML and TLA are 
action based facilitates the construction of a model translator. Figure 4 includes an additional 
property editor, which supports the specification of properties for verification purposes (e.g., 
safety properties: is a certain state reachable at all, or liveness properties: are there traces that 
certain states are never reached or are there infinite cycles). These formal verifications are 
much more complete and show inconsistencies with more rigor than validations using a 
simulator with extensive test cases are able to show.  
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To transform a specification it is required that the following xUML diagrams are specified: 
 
• One or many interaction diagrams which consist of objects, links connecting the objects 

and messages interchanged between objects. It is assumed that every object has a unique 
identifier and the class name is specified. 

• A class diagram which consists of classes and associations. For every object of the 
interaction diagram an according class has to be specified in this diagram defining the 
names and types of class attributes and the signatures of operations. 

• Furthermore a statechart diagram has to be specified for every class of the class diagram 
which describes the behaviour of a class. In a statechart diagram states and transitions are 
specified. It is assumed that a transition consists of an event, an action, and a guard. 
Moreover the transition has a source and a target state. Thus transitions are restricted in a 
way that they may have only one action. If transitions with sequences of actions are 
required, intermediate states containing their own transitions have to be introduced. Each 
transition carries its own action. The syntax of cTLA is used for action specifications 
preserving as much from the bridgepoint ASL as possible. There are a couple of 
similarities between both languages. Constants are specified as cTLA constants. Boolean 
expressions have their counterparts in cTLA Boolean expressions. Arithmetic expressions 
are translated into arithmetic expressions of cTLA. Conditional constructs like IF-THEN-
ELSE and SWITCH are translated into the IF-THEN-ELSE and CASE constructs of 
cTLA. Loops seem to be problematic, since there is no corresponding construct in cTLA. 
Loop variables are transformed into process variables and loop conditions are transformed 
into preconditions of a cTLA action. Assignments of values to variables are handled using 
primed variables of cTLA. 

 
The model translator transforms each class and its according statechart diagram into a 
separate cTLA process with local state variables and actions. Class attributes are transformed 
into the states variables of the cTLA process. An additional variable state keeping the name of 
the current state of the statechart is introduced in every cTLA process of a class. Moreover a 
queue qu modelling the queue of the statechart is added. The statechart diagram is used to 
generate the initial predicate and the actions of this cTLA process. The transformation of a 
transition of the statechart diagram is done generating a cTLA action. The precondition of this 
action consists of the guard condition expressed in cTLA, the variable state holding the value 
of the current state and the event being enqueued as head of the queue qu. Furthermore state 
transitions have to be added transforming the xUML action of the transition have to be 
generated. Every ASL statement is transformed into a conjunct of a TLA action. Additionally 
a state transition specifying the transition into the next state of the statechart is added. 
Furthermore there are actions which are responsible for enqueuing and dequeuing of events 
into the queue. 
The interaction diagram is used for the generation of a cTLA process describing a subsystem 
using the cTLA processes belonging to classes of objects in the interaction diagram. Each 
message which is interchanged between objects of the interaction diagram is transformed into 
a system action conjoining a send or a signal or a return action of an object sending a message 
with an action which is responsible for the enqueuing and dequeuing of events into the queue 
of another object receiving the message.    
The tool Rational Rose is used to model the UML diagrams. It can be extended using the 
scripting language Rosescript. Scripts for the specifications of xUML actions and properties 
on the base of dialogs have been developed. These properties are verified by the model 
checker TLC or by the aid of manual proofs. Furthermore the xUML/cTLA model translator 
is developed using Rosescript. During the transformation of a xUML specification the model 
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translator accesses the repository of Rational Rose to retrieve information about the xUML 
models.  
To generate a flat cTLA specification which is usable as input for TLC, a tool called cTc 
[HMK96] is applied. This tool gets a cTLA specification consisting of several cTLA 
processes as input and generates one cTLA process describing the behaviour of all composed 
cTLA processes.  
Finally some minor transformations have to be done to use this cTLA process as input for 
TLC. Using these tools the tedious work of manual transformations of xUML specifications 
into cTLA specifications is reduced. 
 
A couple of people (see e.g., [D01]) have recognised that xUML will enforce the development 
of several kinds of patterns. To reduce the effort, which is necessary to create formalised 
OOA models it is promising to create formalised libraries of domain dependent prefabricated 
analysis patterns [F97]. Thus the reusability of formal specifications is increased. In [GHK00]  
an example for the formalisation of an analysis pattern for real-time software is shown.   
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Compilation of xUML models for the purpose of verification 

 
Of course, these ideas can be applied to the formalisation of platform specific OOD patterns 
as well.  
Now the verification of PIM to PSM mapping rules should be considered. In [D01] a 
overview of architecture and its relationships towards refinement and architectural style is 
given. Designing a software system is in strong relation with refinement, because refinement 
describes the relationship between a specification including the functional as well as the non-
functional requirements and the design, which is selected to give a solution to the functional 
and non functional requirements. Moreover it is necessary to know that architectural style 
defines the specification and design language which has constraining effects on the 
refinement mapping. A spectrum of architectural styles exist for MDA, but especially two 
architectural styles are interesting which can be composed to build a model compiler: 
1. An architectural style that defines a full translation scheme which means that the 
architectural style is fully determined and is essentially a compiler that supports an automatic 
translation from the specification to the realization. In this case the correctness of the 
refinement is based in the function of the compiler. We do not believe that many of these 
styles exist because recent software systems are influenced by many non-functional 
requirements. A listing of these non-functional requirements would include at least real-time, 
performance, fault-tolerance, security, distribution, scalability. Due to this complexity of non-
functional requirements, we do not believe that this approach works for many domains. Most 
of the model compilers currently available have few possibilities for parameterisation. 
Nevertheless the correctness of the compiler should be proven using formal methods.   
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2. An architectural style defining the language for the specification and the design. Of course, 
the specification should include the functional and non-functional requirements again. 
Furthermore a couple of well-defined rules exist that help to check whether the realization 
maps to the specification. A verification tool should support the design process to check the 
design for correctness. In our opinion this architectural style appears more frequently. We 
would use the structure of the domain for the verification of the correctness of a refinement 
mapping. The triple of an analysis pattern, the non-functional requirement and the 
architectural rules form the basis for the selection of design patterns. The verification of the 
refinement relationships between the analysis pattern and the selected design patterns leads to 
the introduction of so called refinement patterns. The correctness of the refinement mapping 
of each refinement pattern is verified separately with extensive tool support of a model 
checker. Furthermore domain dependent collections of refinement patterns can be formed 
accumulating the design experiences for a certain domain. Refinement patterns with formally 
verified correctness should provide optimal input for a model compiler and still have to be 
parameterised to generate platform specific code. Currently we have modelled some 
refinement patterns for the domain of control software. 
  

Conclusion 
We presented a method to verify xUML specifications in the context of MDA formally by 
means of cTLA and model checking. Up to now two xUML specifications describing 
controllers for distributed control software were transformed into cTLA processes. Invariance 
and refinement properties were verified for these specifications using the model checker TLC. 
Although these verifications are restricted by the state explosion problem our results seem to 
be promising. Future work will concentrate on the development and improvement of model 
translators and model compilers supporting the verification and the generation of correct code. 
It is planned to adapt our transformation tool to the upcoming ASL standard. 
 
 

References 
[AS01] Action Semantics for the UML, http://www.kc.com/as_site/home.html, 2001. 
[D01] Desmond D'Souza: OMG's MDA An Architecture for Modeling, 
http://www.omg.org/mda/presentations.htm. 
[F97] Martin Fowler: Analysis Patterns, Addison-Wesley, 1994. 
[GHK99] Günter Graw, Peter Herrmann, Heiko Krumm: Constraint-Oriented Formal 
Modelling of OO-Systems, in L. Kutvonen, H. König, and M. Tienari(eds.), in 2nd Int. 
Working Conf. on Distributed Applications and Interoperable Systems (DAIS’99), Kluwer 
Academic Publisher, 1999, pp. 345-358. 
[GHK00] Günter Graw, Peter Herrmann, Heiko Krumm: Verification of UML based real-time 
systems designs by means of cTLA+, in 2nd IEEE International Symposion on Object-oriented 
Real-time distributed computing(ISORC 2000), IEEE Computer Science Press, Los Angeles, 
2000, pp. 86-95. 
[L94] Leslie Lamport: The temporal Logic of Actions, ACM Transactions on Programminng 
Languages and Systems, vol. 16, no. 3, pp. 872-923, 1994. 
[L02] Leslie Lamport: Specifying Systems, http://www.lamport.org, 2002. 
[KC01] http://www.kc.com/as_site/home.html, 2001. 
[KC02] http://www.kc.com/cgi-bin/download.cgi?action=ctn/CTN_06v2_5b.pdf. 
[HMK96] Carsten Heyl, Arnulf Mester, Heiko Krumm: cTc a tool supporting the construction 
of cTLA specifications, T. Magaria and B. Steffen editors, Proceedings of the TACAS-96,  
LNCS 1055, Springer, 1996, pp. 407-411.  



 10

[HK00a] P. Herrmann, H. Krumm: A framework for modeling transfer protocols, Computer 
Networks, Volume 34, Nr. 2, 2000, pp. 317-337. 
[HK00b] P. Herrmann, H. Krumm: A framework for the hazard analysis of chemical plants, 
Proceedings op the 11th IEEE International Symposium on Computer aided control system 
design (CAASD2000), IEEE CSS, Anchorage, omnipress 2000, pp. 35-41. 
[MB02] Stephen J. Mellor, Marc J. Balcer: Executable UML, Addison-Wesley, 2002. 
[OAL]  Brigepoint  OAL, http://www.projtech.com/pdfs/bp/oal.pdf. 
[OOA]  Brigepoint  OOA, http://www.projtech.com/pdfs/bp/ooa.pdf. 
[pUML] http://www.puml.org. 
[SPHGJ01] Gerson Sunyé, François Pennaneac’h, Wai-Ming Ho, Allain Le Guennec, Jean-
Marc Jézéquel: Using UML Action Semantics for Executable Modeling and Beyound, 2001. 
[SBK01] Natasha Sharygina, James C. Brown an Robert Kurshan: Formal Object-Oriented 
Analysis for Software Reliability: Design for Verification, 
http://www.cs.texas.edu/users/browne/NewPapers/FASE20011.pdf, 2001. 
[UML] UML Metamodel Version 1.4, http://www.omg.org/uml. 
[YML99] Yuan Yu, Panagiotis Manolios, Leslie Lamport Model Checking TLA+ 
Specifications, in Correct Hardware Design and Verification Methods (CHARME '99), 
Laurence Pierre and Thomas Kropf editors,  LNCS 1703, Springer-Verlag, 1999, pp. 54-66. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 


