
Trust-Based Protection of

Software Component Users and Designers

Peter Herrmann

University of Dortmund, Computer Science Department,
44221 Dortmund, Germany,
Peter.Herrmann@udo.edu

Abstract. Software component technology supports the cost-effective
design of applications suited to the particular needs of the application
owners. This design method, however, causes two new security risks. At
first, a malicious component may attack the application incorporating it.
At second, an application owner may incriminate a component designer
falsely for any damage in his application which in reality was caused by
somebody else. The first risk is addressed by security wrappers control-
ling the behavior at the component interface at runtime and enforcing
certain security policies in order to protect the other components of the
application against attacks from the monitored component. Moreover, we
use trust management to reduce the significant performance overhead of
the security wrappers. Here, the kind and intensity of monitoring a com-
ponent is adjusted according to the experience of other users with this
component. Therefore a so-called trust information service collects posi-
tive and negative experience reports of the component from various users.
Based on the reports, special trust values are computed which represent
the belief or disbelief of all users in a component resp. the uncertainty
about it. The wrappers adjust the intensity of monitoring a component
dependent on its current trust value.
In this paper, we focus on the second security risk. To prevent that
a component user sends wrong reports resulting in a bad trust value
of the component, which therefore would be wrongly incriminated, the
trust information service stores also trust values of the component users.
The trust values are based on valuations resulting from validity checks
of the experience reports sent by the component users. Therefore an
experience report is tested for consistency with a log of the component
interface behavior which is supplied by the component user together
with the report. Moreover, the log is checked for being correct as well.
By application of Jøsang’s subjective logic we make the degree, to which
the experience reports of a component user are considered to compute
the trust value of a component, conditional upon the user’s own trust
value. Thus, users with a bad reputation cannot influence the trust value
of a component since their experience reports are discounted.

1 Introduction

Component-structured software gets more and more popular since applications
can be cost-effectively composed from components which are developed indepen-



2

dently from each other and are separately offered on an open market (cf. [1]).
Suitable components are selected according to the particular needs of the desired
user and are coupled to an application. The components are either executed lo-
cally on the application’s host or run on a remote server and are integrated by
means of a special telecommunication service.

The composition process, however, is aggravated by the heterogeneity of the
component interfaces. Here, component contracts, which are ideally legally bind-
ing, prove helpful. They can be used to adapt the interfaces in order to fit to
each other since the context dependencies of a component have to be explicitly
stated in its contract. According to Beugnard et al. [2] a contract consists of four
parts modeling the structure of a component interface (i.e., the methods with
input and output parameters, events, exceptions), constraints about the inter-
face behavior demanded from the component and its environment, synchroniza-
tion aspects, and quantitative quality-of-service properties. Moreover, reflection
and introspection [3] facilitate the coupling of components by providing special
methods enabling the exploration of component properties, methods, and inter-
faces at runtime. These methods are utilized by visual application builder tools
(e.g., [4]) making the component composition easier. Well-established platforms
for component-structured software are Java Beans [3] and, in particular, Enter-
prise Java Beans [5], Microsoft’s COM/DCOM [6], and the CORBA component
model [7]. Each platform provides notations to describe component types, pa-
rameter types, and interfaces. Furthermore, means to introspect components and
special composition support are provided as well.

The heterogeneity of the components also results in a new class of security
risks. Compared with ordinary monolithic applications in component-structured
software new principals and roles are introduced. Besides of application owners
and users we have to consider also a number of different component designers
as well as application builders and component service providers. On the one
hand, these principals introduce their own security objectives which have to
be fulfilled. On the other hand, each principal is also a potential threat to the
application, its components, and the other principals. A taxonomy of security
risks for components is introduced in [8] and an extended list is published in [9].

Here, we concentrate on two main security risks:

1. A malicious component must not be able to distort components of its en-
vironment and, in consequence, spoil the whole application incorporating
it.

2. A component and its designer must not be incriminated falsely for damage in
a component-structured application which in reality was caused by another
principal.

In [10, 11] we introduce an approach addressing the first risk. It is based on the
component contracts which are extended by models specifying security-relevant
behavior to be fulfilled by a component and its behavior. We assume that ma-
licious or compromised components behave in a way which diverges from the
contract models. Therefore we use so-called security wrappers observing the in-
terface behavior of the component at runtime. Security wrappers are specialized



3

software wrappers (cf. [12]) which are pieces of code extending a component. A
security wrapper is inserted at the interface between a component and its envi-
ronment. It temporarily blocks an event passing the interface and checks it for
compliance with the behavior models in the contract which are simulated. If the
event complies with all models, it may pass. Otherwise, the wrapper seals the
component temporarily in order to prevent harm for the component environment
and notifies the application administrator.

Since the security wrappers cause a significant performance overhead of 5
to 10%, we combined the approach with active trust management [9, 13]. The
intensity of the runtime enforcement by the security wrappers is adjusted ac-
cording to the reputation of the observed component. To serve this purpose, a
component user creates an experience report in intervals and sends it to the so-
called trust information service. A positive report states that no contract model
was violated by the component after sending the last report while in the case of
detecting a contract violation a negative report is issued. The trust information
service collects the reports from various component users and computes for each
rated component a trust value (cf. [14]) stating the users’ belief and disbelief
in the particular component resp. their uncertainty about it. This trust value
is used by the component owners to adjust the intensity of supervision by the
wrappers which may reach from permanent observation via spot checks to the
complete removal of a wrapper. A special trust manager component forms the
link between a wrapper and the trust information service. It automates both the
generation of experience reports and the control of the wrapper.

Unfortunately, the approach sketched above does not address the second
security risk. On the contrary, by sending wrong negative experience reports
about a component to the trust information service, a component user may
easily incriminate the component and its designer. Since the trust values are
not only used to control the security wrappers but also to support procurement
decisions (cf. [9]), an incrimination may lead to a significant financial loss for the
component designer. On the other side, a component may protect a designer of a
malicious component by failing to send negative reports after detecting behavior
violations.

In this paper we introduce an extension of the trust information service
in order to prevent component users manipulating component trust values by
issuing wrong experience reports. Now the trust information service also stores
trust values of component users. The trust value of a component user is used to
determine the degree, an experience report of this user is considered in computing
a component’s trust value. Thus, if a component user already sent false reports,
a bad trust value is assigned to him and, in consequence, his experience reports
are not considered for calculating the trust value of a component anymore.

In order to get decent valuations about component users, a user has to com-
plement an experience report by a log of the events passing the interface of the
evaluated component. The trust information service is supplemented by experi-
ence report checker components checking if the rating in an experience report
is acknowledged by the behavior listed in the log. Moreover, by analyzing the



4

log the experience report checker tests if the other components of the user’s
application fulfilled the component contract models constraining the component
environment. Finally, an experience report checker tests the log for correctness.
Since there are no possibilities to prevent a principal forging a log if the logged
component is within the principal’s control (cf. [15, 16]), the experience report
checker tries to reconstruct a log by running a copy of the component in a sand-
box. It performs a number of runs of the component using the inputs listed in
the log. If in one of the runs the outputs from the component corresponds to the
log as well, the experience report checker accepts the log as correct. Otherwise,
it is rejected as possibly forged. If an experience report passes all three tests the
experience report checker sends a positive rating of the component user and a
negative rating otherwise. The component user’s trust value is calculated from
these ratings.

To avoid correctness proofs of logs by reconstructing the log events, a compo-
nent user may also use a so-called witness host. Here, the component in question
is not executed on the system of the component user but on a remote host and
incorporated to the application by means of a telecommunication service. This
witness host produces an own interface log and passes it to the trust information
system instead of the component user himself. Since it is trusted by the trust
information service, the log is considered to be correct and experience report
checker has only to perform the two other tests.

In the sequel, we give at first a short introduction into trust management
and, in particular, into the computation of trust values. Thereafter, we sketch
the security wrappers and their trust-based control. Afterwards, we outline the
extended trust information service. Finally, we introduce the experience report
checker components and the witness hosts.

2 Trust Management and Trust Value Computation

According to Khare and Rifkin [17] the World Wide Web “will soon reflect the
full complexity of trust relationships among people, computers, and organiza-
tions.” The goal of trust management is to include trust relations between rel-
evant human and computer entities in the decision which security mechanisms
should be used in order to protect certain principals and their assets against
malicious attacks. Jøsang [14] defines two different kinds of trust relationships
reflecting interactions between humans resp. between humans and computers. He
calls humans passionate entities and computers as well as other entities without
a free will (e.g., organizations) rational entities. One trust relationship may exist
between two passionate entities A and B. Here, A trusts B if A believes that B
behaves without malicious intent. The other trust relationship considers trust of
a passionate entity A in a rational entity B. Since B cannot be benevolent or
malicious due to the lack of a free will, this relationship states the belief of A
that B will resist any malicious manipulation caused by an external passionate
entity C.



5

Beth et al. [18] define two different types of trust. An entity A has direct trust

in another entity B if it believes in the benevolence of B itself. In contrast, A
has recommendation trust in B, if it believes that B gives a reliable and honest
assessment of the benevolence or nastiness of a third entity C.

Some interesting approaches of trust management exist in the field of access
control. Since traditional discretionary and mandatory access control models are
not adequate for large distributed systems as the Internet with a large number of
fluctuating participants (cf. [19]), credential-based systems like PolicyMaker [20],
REFEREE [21], KeyNote [22], and the Trust Establishment Toolkit [23] gain
more and more popularity. In these systems third party entities issue credentials
to principals if they have direct trust in them. If a principal wants to access
a resource, it passes its credentials to the resource provider. Depending on his
recommendation trust in the issuers of the credentials, the resource provider
decides about granting access to the owner of the credentials.

A variant of credential-based systems are label bureaus [24]. Here, web pages
are labelled in order to protect children from access to objectionable Internet
sites. In contrast to the previous approaches, besides of trusted authorities (third-
party labels) labels may be also issued by the web site designers (first-party) or
by interested web site users (second-party).

Reputation systems (cf. [25]) are another application domain for trust man-
agement. Here, an entity rates another entity according to its experience in deal-
ing with the counterpart. A reputation system collects the ratings and publishes
them either completely or encoded in a certain scheme. The ratings provide other
entities with support in deciding about the trustworthiness of the rated compo-
nent. A well-known example is the feedback forum of the Internet auctioneer
eBay [26] where sellers and buyers can rate each other. A more recent approach
is the Feedback Collection and Reputation Rating Centre (FCRRC) [27] which
is used to create reputation on parties to electronic contracts. According to Del-
larocas [28], reputation systems, however, are vulnerable against attacks leading
to wrong reputations of principals. In particular, sellers of a good may collude
with buyers in order to get unfairly high ratings themselves or to provide other
sellers with unfairly low ratings. In our system, which is also a special reputation
system, we rule out this vulnerability by applying the experience report checkers
(cf. Sec. 5).

In order to use trust management in practice, one has to define a measure to
state various degrees of trust. In [29], Jøsang introduces trust values which are
triples of three probability values. Two values state the belief resp. disbelief in
an entity while the third one describes uncertainty. This third value is necessary
since the knowledge of an entity may be too small to give a decent assessment.
A trust value can be modeled by a so-called opinion triangle (cf. Fig. 1). Here,
the belief, disbelief, and uncertainty are specified by the values b, d, and u which
are real numbers between 0 and 1. Since, moreover, a trust value fulfills the
constraint b + d + u = 1, it can be denoted by a point in the triangle. A trust
value stating a high degree of uncertainty is modeled by a point close to the top



6

BeliefDisbelief

Uncertainty

0

0

0

1 1

b

u

d

1

Fig. 1. Opinion Triangle (taken from [29])

of the triangle while points on the right or left bottom state great belief resp.
disbelief based on large experience with the entity.

In his subjective logic [30], Jøsang extended the trust values to so-called
opinions. Here, a forth probability value, the relative atomicity, was introduced.
It denotes the degree of optimism or pessimism that the current uncertainty
leads eventually to belief resp. disbelief. Since we do not use relative atomicity,
we will apply the original trust value triples.

Trust values are used to describe both the direct trust in an entity and the
trust in the recommendation of an entity about a third one. Jøsang and Knapskog
introduce the following metric [31] to compute trust values from the number p
of positive valuations and n of negative valuations of the entity in question:

b = p

p+n+1
d = n

p+n+1
u = 1

p+n+1

The metric expresses a relatively liberal philosophy to gain trust since neg-
ative valuations can be compensated by an arbitrary number of positive assess-
ments. Since this philosophy is probably too tolerant for some trust-management
policies, we also apply the metric of Beth, Borcherding, and Klein [18]. This
approach follows an unforgiving philosophy. For direct trust, the belief b is com-
puted by the following formula vd:

b = vd(p, n) =

{
1 − αp : n = 0

0 : n > 0

Basically, vd describes the probability that the reliability of the trust in an entity
(i.e., the belief b) is larger than the value α. Thus, the larger α will be selected,
the lower will be the value of b. Beth’s approach does not address the distinction
between the disbelief d and the uncertainty u but one can calculate d and u by
means of the formulas

d =

{
0 : n = 0
1 : n > 0

u =

{
αp : n = 0
0 : n > 0



7

In this metric, a single negative experience destroys the trust in an entity for-
ever. In contrast, like in Jøsang’s approach for recommendation trust negative
experience can be compensated by positive valuations which is stated as follows:

b = vr(p, n) =

{
1 − αp−n : p > n

0 : else

Since, below, we do not need an explicit distinction between disbelief and un-
certainty for recommendation trust, we assume that d + u = 1 − vr(p, n).

The combination of direct and recommendation trust values is addressed by
Jøsang’s subjective logic [30] which contains special trust combining operators.
A trust value stating the direct trust in an entity x based on the recommendation
of an entity r can be calculated by means of the discounting-operator ⊗. If the
trust value ωr = (br, dr, ur) describes the trust of oneself in the recommendations
of r and ωr

x = (br
x, dr

x, ur
x) the direct trust of r in x, the direct trust ωrx =

(brx, drx, urx) of oneself in x based on the recommendation of r corresponds to
the formula ωrx ≡ ωr ⊗ ωr

x where

ωr ⊗ ωr
x =̂ (brb

r
x, brd

r
x, dr + ur + bru

r
x)

The consensus-operator ⊕ is used to calculate the trust value ωx stating
the direct trust in an entity x from two trust values ωr1x = (br1x, dr1x, ur1x) and
ωr2x = (br2x, dr2x, ur2x) which describe the trust in x based on recommendations
of two different entities r1 and r2. The trust value ωx is computed by the formula
ωx ≡ ωr1x ⊕ ωr2x and the operator ⊕ is defined by the formula

ωr1x ⊕ ωr2x =̂ ((br1xur2x + br2xur1x)/κ, (dr1xur2x + dr2xur1x)/κ, (ur1xur2x)/κ)

where κ is equal to ur1x + ur2x − ur1xur2x. Since the consensus-operator is com-
mutative and associative, it can be used to calculate the trust of various recom-
mendations.

By application of the metrics we can compute the trust of a particular com-
ponent user in a component based on his experience reports. Thereafter, by using
the discount-operator we can weight this trust value based on the recommen-
dation trust value of the user. Finally, we can compute the trust value of the
component from the recommendation trust-weighted assessments of all users by
associative application of the consensus-operator.

3 Security Wrappers

In order to check that a component fulfills the security objectives specified in
the models of its component contract, we put a security wrapper in between the
component and its environment which checks all incoming and outgoing events
for compliance with the behavior models in the contracts [10, 11]. Figure 2 depicts
the wrapper implementation [32] for Java Beans-based component-structured
systems. An adapter bean is put in between the component to be scrutinized



8

Bean to
be

checked
Adapter

Observer Monitor

Adapter Generator

Java
Security

Manager

Trust

Manager

Introspects

Bean
Generates

Reports

Events

Reports

Controls

Controls

Controls

Intensity

of Checks

Watches

Reports

Reports

Controls

Log
Logs Events

Reads

Logs

Trust
Information

Service

linked with

Fig. 2. Security Wrapper Architecture

and its environment. It blocks all events passing the interface temporarily and
reports them to the observer beans. An observer simulates a contract model and
checks if the event reported by the adapter complies with the simulated model.
If the event violates the model, a report is forwarded to the monitor bean which
acts as a user interface to the application administrator. Moreover, the observer
notifies the adapter which seals the component until the opposite decision of
the administrator. In contrast, if all observers report to the adapter that the
event fulfills their models, the adapter forwards the event to its destination.
Furthermore, the adapter lists all events passing the component interface in the
log database in order to create a complete log of the interface behavior. The
adapters are generated automatically by the adapter generator which uses the
Java introspection mechanism [3] to analyze the interface of the component to
be wrapped. Finally, we use also the built-in Java security manager to prevent
the component using other channels than the wrapped component interface.

The intensity of the security policy enforcement is adjusted by the trust man-
ager bean according to the current trust value of the wrapped component. The
wrapped component may either be fully observed, spot checked only in times,
or the supervision may be terminated1. As an example we introduced in [11,
13] a component-based application performing the commodity management of
fast-food restaurants. In [13] we analyzed the component contracts of this ap-
plication with respect to their relevance for the system security and subdivided
them into three groups each containing models of a certain level of sensitivity.
Afterwards, we defined for each group a wrapper management policy. According
to this policy, the models of the first group describing the most sensitive security
objectives have always to be fully enforced. Models of the second group may be
spot checked if the belief value b of the component’s trust value exceeds the
value 0.999 according to the metric of Beth et al. [18] with the reliability value
α = 0.99. Moreover, if b is larger than 0.99999, the enforcement of the models

1 A supervision should only be terminated if the belief in the component is very high
since after the termination the wrapper cannot be reinstalled again.



9

may be terminated and corresponding observers may be removed. Finally, for
the models of the third group we use the more tolerant metric of Jøsang and
Knapskog [31] allowing spot checks for b > 0.99 and observation termination
for b > 0.999. By application of these policies, the performance overhead of the
wrapper for a trustworthy component could be reduced in steps from 5.4% to
3.2%.

Moreover, the trust manager forms the link between the security wrapper and
the trust information service outlined below. In intervals, it reads the current
trust value from the trust information service and adjusts the wrapper enforce-
ment policy accordingly. Furthermore, on request of the trust information service
it returns experience reports about the component interface behavior enclosed
by the log of the behavior which is stored in the log database. If the component
behavior complied with the contract models since transmitting the last report, a
positive experience report is sent. If an observer detected a minor violation (e.g.,
in our commodity management application the violation of a contract model of
the third group), a negative report is sent. In the case of a major violation (e.g.,
of contract models of the first or second group), the negative report is not sent
after request from the trust information service but immediately. If the trust
information service can verify the log or the component user is highly trusted
(cf. Sec. 5), an alarm message is sent to all other users of the component in
order to prevent harm on their systems. If the trust manager receives an alarm
message caused by a negative experience report by another component user, it
instructs the security wrapper to notify the application administrator and to
seal the component.

4 Trust Information Service

Trust values of components and component users are computed by the trust
information service. As delineated in Fig. 3, it is linked with component de-
signers, with trust managers of user systems executing components, and with
third-party certification authorities certifying components on behalf of compo-
nent designers (cf. [33]). The trust information service consists of two parts in
order to guarantee a high degree of privacy. A cipher service stores the registra-
tion data of components and component users and generates for each registered
entity a unique cipher. The assessments of the entities are stored by the trust
value manager which also computes and stores the trust values. Since, however,
the assessments and the trust values are stored only by using the ciphers, neither
the cipher service nor the trust value manager have full knowledge about the
identities and trust values of the entities.

A component designer may register a component with the cipher service
(cf. [9]). In order to avoid man-in-the-middle attacks, the components are sent
accompanied by a digital signature to the cipher service. The cipher service
creates a unique cipher of the component and forwards it to the trust value
manager. Moreover, it also generates a digital signature based on a hash value
of the component code and the cipher and sends it to the component designer.



10

Trust

Value

Manager

Cipher

Service

Trust Information Service

Component

Designer

Trust

Manager

Certification

Authority

Designer registers

component and

receives signed cipher

Cipher Service

announces new cipher

Designer delivers

signed cipher

Cipher service

delivers public key

Trust Information

Service delivers

trust value

based on cipher

And notifies

Trust Manager

about incoming

bad experiences

Trust Manager

passes reports on

experiences with

ciphered component

including interface

log

Certification Authority

certifies component

in behalf of designer
Certification Authority

certifies component

in behalf of customer
Certification

Authority passes

report on

certification results

Trust Manager

registers

component user

Fig. 3. Trust Information Service

Thus, neither the component designer nor anybody else may afterwards alter
a component without the change being detected by the component users. The
component designer may hand the signed cipher over to interested component
users.

Trust managers who want to use the trust information service have to register
their component users, too. Here, the cipher service also generates a unique
cipher which is signed and sent to the trust manager and the trust value manager.
If a trust manager is interested in a trust value of a component, it sends its cipher
to the trust value manager. The trust value manager returns the two trust values
calculated according the two metrics introduced in Sec. 2. Moreover, a trust
manager may ask for the recommendation trust value of its own component user
but — to improve privacy — not of other component users. Finally, the trust
manager sends experience reports about components to the trust value manager.
An experience report is accompanied by the cipher and the interface log of the
evaluated component as well as the cipher of the component user.

For all registered component users u1, . . . , un the trust value manager stores
the number of positive and negative ratings issued by the experience report
checkers which will be outlined in Sec. 5. From these ratings it computes twice
the recommendation trust value ωui

of each component user ui according to both
metrics introduced in Sec. 2. Moreover, it keeps for each registered component
c the experience reports of all component users. Based on this information, the



11

Com- Ratings Rec. Trust Ratings Dir. Trust Trust Trust
ponent of ui Values ωui

of c by ui Values ω
ui
c Values ωuic Value ωc

Users pos. neg. Jøsang pos. neg. Jøsang Jøsang Jøsang

u1 12 4 (.71,.23,.06) 7 0 (.88,.00,.12) (.62,.00,.38)
u2 15 0 (.94,.00,.06) 8 0 (.89,.00,.11) (.84,.00,.16) (.84,.04,.12)
u3 6 9 (.37,.57,.06) 2 5 (.25,.63,.12) (.09,.23,.68)

pos. neg. Beth pos. neg. Beth Beth Beth

u1 12 4 (.08,.92) 7 0 (.07,.00,.93) (.01,.00,.99)
u2 15 0 (.14,.86) 8 0 (.08,.00,.92) (.01,.00,.99) (.02,.00,.98)
u3 6 9 (.00,1.0) 2 5 (.00,1.0,.00) (.00,.00,1.0)

Table 1. Example for the computation of trust values

trust value ωc of c can be calculated for both metrics using the discounting
and consensus-operators of the subjective logic [30]. At first for each metric the
value ωui

c of the trust of ui in c is calculated. Thereafter, the trust value manager
computes the trust value ωuic stating the trust in c based on the recommendation
of ui by application of the formula ωuic = ωui

⊗ ωui

c . Finally, ωc is computed
from these trust values by means of the formula ωc = ωu1c ⊕ ωu2c ⊕ . . . ⊕ ωunc.

To clarify the approach, Tab. 1 delineates an example computation of the
trust value ωc of a component c based on the experience reports of three com-
ponent users u1, u2, and u3 based on both metrics. The example points out that
the negative rating of the component c by user u3 has no significant influence on
the trust value of c since u3 has a very bad recommendation trust value result-
ing from various questionable experience reports. Moreover, the example clarifies
that the metric of Beth et al. with the selected reliability α = 0.99 is much more
conservative than the one of Jøsang and Knapskog. While the belief value of
ωc according to Jøsang’s metric is already relatively close to 1 indicating great
belief in c, it remains very close to 0 in Beth’s metric showing nearly complete
uncertainty.

Besides of trust managers, the trust value manager is also interested in expe-
rience reports from trusted third party certification authorities (cf. [33]). There-
fore, component designers may send certificates of their components during reg-
istration or later. Then, the cipher service asks the certification authority to
send an assessment report describing the results of the certification process to
the trust value manager. Since the certification process tends to be more pro-
found (but also more expensive) than policy enforcement by security wrappers,
we weight these valuations like 50 ordinary reports from component users.

Finally, the trust value manager uses the recommendation trust values of
component users to decide about forwarding alarm messages. If a component
user u reports a severe security violation by a component, alarm messages to
other component users are only generated immediately if the belief b of u’s trust
value exceeds 0.9999 according to the metric of Beth et al. [18] which is reached
after 917 positive valuations. Otherwise, the log passed with u’s report has to be



12

Trust Information

Service

Trust

Manager

Trust Manager

passes reports on

experience with

a component and

the interface log

Bean
to be

checked
Adapter

Log

Experience Report Checker

Cipher

Service

Trust

Value

Manager

Cipher Service

passes component

code and

component contract

models

Trust Value Manager

passes

experience report

and log

Reads Log

Event

Generator

Component

Event

Checker

Event Generator
generates

component

environment

-based events

Component Event

Checker checks

events from the

component with

the log

Log Checker

reports results

of log checking

Environment

Behavior

Checker

Valuation

Checker

Environment

Behavior

Checker

Valuation

Checker

Environment

Behavior

Checker

Valuation

Checker

Fig. 4. Experience Report Checker

checked by an experience report checker before warning the component users. By
this policy we try to make a compromise between informing component users
early about security risks and preventing wrong incriminations of component
designers which would be fostered by unfounded alarm messages.

5 Component User Evaluation

The recommendation trust of component users is computed based on the cor-
rectness of their experience reports which are validated by using the logs of the
events passing the component interface. An experience report checker validates
an experience report by carrying out three different tests. If the tests are passed,
it sends a positive rating of the component user to the trust value manager and
otherwise a negative rating.

The structure of the experience report checker is delineated in Fig. 4. The
valuation checkers are used to perform the first test. They check if the expe-
rience report complies with the log. Similarly to the observers in the security
wrapper (cf. Sec. 3), a checker simulates a model of the component contract
but, in contrast to the observers, uses the log as an input. If the component
user sent a positive experience report, all valuation checkers have to state that
their simulated contract models were not violated by the log. If the experience
report is negative, at least one valuation checker has to detect a violation of the
simulated model according to the log.

In the second test the log events triggered by the component environment
have to be checked for compliance with the component contract models con-
straining the interface behavior. This test is necessary since a component user
may easily provoke wrong behavior by inducing an environment component to



13

send wrong events to this component. An environment behavior checker also
simulates a contract model by using the events listed in the log. The test is
passed if all environment checkers accept the log entries.

Finally, the third test reflects that nobody can prevent a component user to
forge a log as long as the component is executed under the control of this user
(cf. [15, 16]). Therefore it would be easy to change a log in a way that it complies
with a wrong experience report. To detect this kind of fraud, the experience
report checker tries to reconstruct the log by running the component in a sandbox
environment. From the cipher service it loads the component code which due to
the digital signature of the cipher service is identical with the code running on
the component user’s system (cf. Sec. 4). The event generator creates the events
of the component environment according to the log entries and sends them to the
component. The resulting events triggered by the component are forwarded to
the component event checker which checks them for compliance with the events
listed in the log. If an event does not correspond with the corresponding log
entry, the run is discarded. We laid down that a test run may be repeated nine
times in order to treat nondeterministic component behavior. The test is passed
if at least one of these runs is consistent with the log.

The third test causes a severe problem. A component developer may build
a nondeterministically behaving component in order to harm the reputation of
component users since experience report checks of this component will often fail
the third test and, in consequence, the recommendation trust values of the users
will get worse. To prevent this problem, we introduced an alternative solution
for proving the correctness of logs, too. It utilizes the possibility to execute a
component-structured application on a distributed system. In particular, the
component in question may be executed on a remote host. Here, on the appli-
cation site a proxy is running instead of the component itself. The application
site is linked via a network with the site executing the component and the proxy
organizes the transmission of incoming and outgoing events through this link.
In our Java-based solution we use the communication protocol RMI (Remote
Method Invocation, [34]) to perform the transmission of the event objects. Fur-
thermore, the log of the component interface behavior may be created not only
on the application site but also on the remote host. Here, we use special witness
hosts which are trusted by the trust information service. Since these trusted
hosts send the logs to the trust value manager instead of the component users,
the trust value manager can accept the correctness of the log without an expe-
rience report checker performing the third test. Thus, if a component user feels
that he got an unjustified bad recommendation trust value since his experience
reports often failed the third test, he can forward components to witness hosts.
Thereafter, his experience reports will pass the tests and his trust value will
recover.

The tests performed by the experience report checker rule out the collusion of
component designers and users in order to manipulate trust values of components
by sending wrong experience reports to the trust information service (cf. [28]).
The manipulations will be detected and, in consequence, the experience reports



14

will not be considered in the computation of component trust values anymore.
Thus, we avoid the addressed security risk that components and their designers
may be falsely incriminated.

Since the trust information system extension is not yet finished now, we can-
not identify the exact performance requirements of the experience report check-
ers. We estimate the duration of the first and second tests as limited since the
contract models can be simulated based on the log entries without the expendi-
ture of running a real component. In contrast, the third test is considered more
expensive, in particular, if the log reconstruction runs have to be repeated. This
test, however, is only needed if no witness hosts are used. If not all experience
reports can be checked in the time between two rounds of inquiring component
user valuations, we skip the checks of the remaining reports. To guarantee that
the most relevant checks are performed, we carry them out in the following order:
At first, we check reports about severe security violations in order to send alarm
messages as early as possible. Thereafter, we check the other negative experience
reports since they are more relevant for wrong incriminations of component de-
signers than positive reports. We give priority to reports from users with a low
belief-value b in their recommendation trust values. Finally, we check positive
experience reports where again users with a low value b are preferred.

6 Concluding Remarks

We proposed our approach for the fair trust-based enforcement of component-
structured software. The amount of enforcement depends on the trust values
which are computed based on reports stating the experience of running a com-
ponent in question. Moreover, we check the validity of the experience reports
and calculate recommendation trust values of component users based on these
checks. By discounting experience reports of users with a bad recommendation
trust value, we tackle the security objective of incriminating components and
their designers wrongly by issuing false reports. Of course, our approach is still
vulnerable against time bomb attacks where a principal behaves correctly for a
while to get good ratings and thereafter carries out attacks (cf. [25]). Therefore,
we recommend to define conservative security wrapper management policies in
order to allow a reduction of the runtime enforcement only if time bomb be-
havior is not sensible anymore since correct behavior of a component leading
to a good reputation renders a higher profit to the component designer than
the gain based on a successful attack. This is reflected in our commodity man-
agement example [13], where we enforce the most crucial component contracts
permanently.

References

1. Szyperski, C.: Component Software — Beyond Object Oriented Programming.
Addison-Wesley Longman (1997)



15

2. Beugnard, A., Jézéquel, J.M., Plouzeau, N., Watkins, D.: Making Components
Contract Aware. IEEE Computer 32 (1999) 38–45

3. Sun Microsystems: Java Beans Specification. Available via WWW: java.sun.com
/beans/docs/spec.html (1998)

4. Lüer, C., Rosenblum, D.S.: WREN — An Environment for Component-Based De-
velopment. Technical Report #00-28, University of California, Irvine, Department
of Information and Computer Science (2000)

5. Sun Microsystems: Enterprise Java Beans Technology — Server Component Model
for the Java Platform (White Paper). Available via WWW: java.sun.com/products
/ejb/white paper.html (1998)

6. Microsoft: The Microsoft COM Technologies. Available via WWW: http://www.
microsoft.com/com/comPapers.asp (1998)

7. Object Management Group: CORBA Component Model Request for Proposals
(1997)

8. Lindqvist, U., Jonsson, E.: A Map of Security Risks Associated with Using COTS.
IEEE Computer 31 (1998) 60–66

9. Herrmann, P.: Trust-Based Procurement Support for Software Components. In:
Proceedings of the 4th International Conference on Electronic Commerce Research
(ICECR-4), Dallas, ATSMA, IFIP (2001) 505–514

10. Herrmann, P., Krumm, H.: Trust-adapted enforcement of security policies in dis-
tributed component-structured applications. In: Proceedings of the 6th IEEE Sym-
posium on Computers and Communications, Hammamet, IEEE Computer Society
Press (2001) 2–8

11. Herrmann, P., Wiebusch, L., Krumm, H.: State-Based Security Policy Enforcement
in Component-Based E-Commerce Applications. In: Proceedings of the 2nd IFIP
Conference on E-Commerce, E-Business & E-Government (I3E), Lisbon, Kluwer
Academic Publisher (2002) 195–209

12. Fraser, T., Badger, L., Feldman, M.: Hardening COTS Software with Generic
Software Wrappers. In: Proceedings of the 1999 IEEE Symposium on Security
and Privacy, IEEE Computer Society Press (1999) 2–16

13. Herrmann, P.: Trust-Based Security Policy Enforcement of Software Components.
In: Proceedings of the 1st Internal iTrust Workshop On Trust Management In
Dynamic Open Systems, Glasgow (2002)

14. Jøsang, A.: The right type of trust for distributed systems. In: Proceedings of
the UCLA Conference on New Security Paradigms Workshops, Lake Arrowhead,
ACM (1996) 119–131

15. Schneier, B., Kelsey, J.: Cryptographic Support for Secure Logs on Untrusted
Machines. In: Proceedings of the 7th USENIX Security Symposium, San Antonio,
USENIX Press (1998) 53–62

16. Bellare, M., Yee, B.: Forward Integrity for Secure Audit Logs. Technical report,
Computer Science and Engineering Department, University of California at San
Diego (1997)

17. Khare, R., Rifkin, A.: Weaving a Web of Trust. World Wide Web Journal 2 (1997)
77–112

18. Beth, T., Borcherding, M., Klein, B.: Valuation of Trust in Open Networks. In:
Proceedings of the European Symposium on Research in Security (ESORICS).
Lecture Notes in Computer Science 875, Brighton, Springer-Verlag (1994) 3–18

19. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The Role of Trust Man-
agement in Distributed Systems Security. In Vitek, J., Jensen, C., eds.: Internet
Programming: Security Issues for Mobile and Distributed Objects. Springer-Verlag
(1999) 185–210



16

20. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Pro-
ceedings of the 17th Symposium on Security and Privacy, Oakland, IEEE (1996)
164–173

21. Chu, Y.H., Feigenbaum, J., LaMacchia, B., Resnick, P., Strauss, M.: REFEREE:
Trust Management for Web Applications. World Wide Web Journal 2 (1997)
127–139

22. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The KeyNote Trust
Management System, Version 2. Report RFC-2704, IETF (1999)

23. Herzberg, A., Mass, Y.: Relying Party Credentials Framework. Electronic Com-
merce Research Journal (2003) To appear.

24. Shepherd, M., Dhonde, A., Watters, C.: Building Trust for E-Commerce: Collab-
orating Label Bureaus. In Kou, W., Yesha, Y., Tan, C.J., eds.: Proceedings of the
2nd International Symposium on Electronic Commerce Technologies (ISEC’2001).
LNCS 2040, Hong Kong, Springer-Verlag (2001) 42–56

25. Resnick, P., Zeckhauser, R., Friedman, E., Kuwabara, K.: Reputation Systems:
Facilitating Trust in Internet Interactions. Communications of the ACM 43 (2000)
45–48

26. eBay Inc.: Feedback Forum. Available via WWW: pages.ebay.com/services/forum
/feedback.html (2002)

27. Milosevic, Z., Jøsang, A., Dimitrakos, T., Patton, M.A.: Discretionary Enforcement
of Electronic Contracts. In: Proceedings of the 6th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2002), Lausanne (2002) 39–50

28. Dellarocas, C.: Immunizing Online Reputation Reporting Systems Against Unfair
Ratings and Discriminatory Behavior. In: Proceedings of the 2nd ACM Conference
on Electronic Commerce (EC’00), ACM Press (2000) 150–157

29. Jøsang, A.: An Algebra for Assessing Trust in Certification Chains. In Kochmar,
J., ed.: Proceedings of the Network and Distributed Systems Security Symposium
(NDSS’99), The Internet Society (1999)

30. Jøsang, A.: A Logic for Uncertain Probabilities. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 9 (2001) 279–311

31. Jøsang, A., Knapskog, S.J.: A metric for trusted systems. In: Proceedings of the
21st National Security Conference, NSA (1998)

32. Mallek, A.: Sicherheit komponentenstrukturierter verteilter Systeme: Vertrauens-
abhngige Komponentenberwachung. Diplomarbeit, Universität Dortmund, Infor-
matik IV, D-44221 Dortmund (2000)

33. Voas, J.: A Recipe for Certifying High Assurance Software. In: Proceedings of
the 22nd International Computer Software and Application Conference (COMP-
SAC’98), Vienna, IEEE Computer Society Press (1998)

34. Sun Microsystems Palo Alto: Java Remote Method Invocation — Distributed
Computing for Java. Available via WWW: java.sun.com/marketing/collateral
/javarmi.html (1999)


