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Abstract. In our approach for the engineering of reactive services, we
specify systems as collaborations by means of UML 2.0 activities. In
automated and correctness-preserving steps, the collaborative models
are transformed into executable code. The semantics of the activities
are defined using temporal logic. This formal fundament can be utilized
to prove that the collaborations fulfill certain general well-formedness
properties which can be verified by the model checker TLC. This is
quite relevant since communication delays in the interactions between
the participants realizing a collaboration aggravate the design of correct
collaborative behavior. The well-known state space explosion problem
of model checkers is mitigated by using special external state machines
which define the interface behavior of sub-activities. The generation of
the formal input for TLC from the activities is completely automated,
so that the engineers working on the activities do not need to be experts
in temporal logic and model checking. In this paper, we describe the
utilization of TLC to detect and correct design errors by means of an
example.

1 Introduction

In our engineering approach for reactive services SPACE [1-5], system speci-
fications are composed of building blocks that model functionality related to a
certain task. The building blocks are collaborations covering several components.
In addition to the necessary interactions, they also define the local behavior of
all the participating components. We use UML 2.0 activities to describe the be-
havior of collaborations. Activities can be divided into several partitions, each
identifying the tasks of the individual participating components. Control flows
are represented explicitly and may be synchronized by a number of control nodes.
Moreover, activities can be decomposed into sub-activities, so that systems may
be built from already existing building blocks.

Enabling entire collaborations as the structuring units of service specifica-
tions is beneficial in various respects. First, services usually involve several par-
ticipating components. Describing them by collaborations gives a holistic view
of the service which can be understood without combining all the component
descriptions. Second, the degree of reuse is potentially higher since a collabo-
ration solves only a certain subtask and is therefore more likely to be useful in
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Fig. 1. Tool Support for the SPACE engineering approach

other applications than entire components that typically combine several tasks
making them very specific (see for example [5]).

Figure 1 outlines the development process along with the tools supporting
it. An engineer works on collaborative service specifications, using a library of
reusable building blocks providing solutions to reoccurring problems. The build-
ing blocks can be composed together with additional “glue” logic using an editor
for activities. For the execution of the services, however, descriptions of the sys-
tem components are needed. We hereby follow a specification-driven approach,
in which the service specifications composed of the collaborations are automat-
ically transformed to component-oriented service design models in the form of
UML 2.0 state machines, as described in [3]. This has the benefit that consis-
tency between the different development stages is ensured, and engineers just
have to maintain the service specifications. The state machines are then the in-
put for our code generators that produce executable code for various platforms
(see [4]).

For such an approach and its tools to be correct, formal reasoning is needed
to guarantee that properties described by the individual collaborative building
blocks are preserved by the composed system. Furthermore, the properties must
be maintained through the model transformation to state machines and the
implementation on the various execution platforms. For this, we use the compo-
sitional Temporal Logic of Actions (¢TLA, [6]). We formalized both the service
specifications in terms of activities [7] as well as the state machines [4]. The
coupling principle of ¢TLA supports the property of superposition [§8], in which
properties of a part of the system (i.e., the individual building blocks) are also
valid for the composed system. This makes it possible to map the composition of
activities and state machines directly to the cTLA couplings. The model trans-
formation and code generation correspond to refinement steps. Thus, we can use
c¢TLA refinement proofs to verify that these steps are correct (see [3,4]).

This approach is already beneficial for specification quality, since the abstrac-
tion level of the models is higher which allows for a better understanding of the
behavior. Coding errors cannot be introduced due to the automatic translation.
Nevertheless, the created models need to be correct as well. While some proper-
ties may be ensured by a purely syntactic analysis, others require us to consider
entire behaviors, for example, that interface events of building blocks have to
occur in a certain order. This is usually hard to guarantee manually as behav-



ior involving several components can get quite complex due to the unavoidable
delays of the communication medium connecting them. To assure correctness of
such behaviors, model checking (i.e., the examination of all reachable states a
behavioral description implies) can be used. Model checking, however, needs a
certain amount of expertise in formal reasoning, which we do not want to claim
from the engineers using our approach. A possibility to overcome this situation is,
as Rushby suggests in “Disappearing Formal Methods” [9], to wrap formal tech-
niques within tools so that they are not seen as difficult anymore, and to increase
their user-friendliness. The idea behind this is that a user does not necessarily
need to understand the details of a formal technique and model-checking, if an
automated checking tool gives understandable feedback addressing the problem
in the language of the engineer’s domain.

To follow such an approach, we developed in [10] an automatic transformation
tool from UML 2.0 activities to TLA™, the language of the Temporal Logic of
Actions (TLA, [11]). For this language, the model-checker TLC [12] is available
which can check a specification for various temporal properties that are stated in
form of theorems. For each activity, we generate a set of theorems automatically
which claim certain properties to be kept by activities in general. Examples for
these properties are the correct usage of building blocks within the activity as
well as that the activity itself satisfies a certain externally visible behavior. When
TLC finds that a theorem is violated, it produces an error trace displaying the
state sequence that leads to the violation. This trace can be given in terms of
easily comprehensible token markings within an activity as well. So, an engineer
using our tools does not have to write or understand the temporal logic formulas.

The presented approach for model checking makes use of the compositional
nature of our service specifications. As described in [7], a system composed of
collaborations guarantees the properties of the single collaborations to be main-
tained. This follows directly from the semantics based on ¢TLA [6] and the
principle of superposition. The activities describing the complete behavior of
collaborations may be specified in a more abstract form by means of special
state machines that refer to externally visible events dedicated for composition.
When model checking a composite specification, only the abstract specification
has to be taken into account, which reduces the state space. Thus, we check
each collaboration separately and do not consider the entire hierarchy which
effectively mitigates the likelihood of state space explosions.

After discussing some related work done on formal checking of UML models,
we give an introduction to temporal logic as well as the model checker TLC in
Sect. 3. We proceed by introducing an example specification based on activities,
and explain the semantics of activities in temporal logic in Sect. 4. Thereafter,
we use our tools in Sect. 5 to develop an example, starting with a naive solution
that gets corrected based on the feedback of the model checking. We close in
Sect. 6 with some concluding remarks.



2 Related Work

Formal checks on UML models are done as part of OMEGA [13], FUJABA [14]
and HUGO [15]. However, these approaches mainly concentrate on state ma-
chines or sequence diagrams, but not on activities as in our case. In [16], UML
activities are translated into PROMELA, the input language for the SPIN model
checker [17]. In [18], a mapping from UML 2.0 activities to Colored Petri Nets is
described enabling the usage of Petri Net tools for analysis. In [19], UML activi-
ties are transformed into the w-calculus where safety and liveness properties can
be expressed using the modal mu-calculus and checked using the MWB tool [20].
Eshuis [21] uses NuSMV, a symbolic model verifier to check the consistency of
activity diagrams. The difference of these approaches to ours lies mainly on the
domain that activities are used for and the chosen semantics. While they focus on
activities more from a perspective of business processes assuming a central clock
or synchronous communication, we need for our activities reactive semantics [7]
reflecting the transmission of asynchronous messages between distributed com-
ponents. This semantics enables us to generate the executable state machines
defined in [4].

3 The Temporal Logic of Actions

Leslie Lamport’s Temporal Logic of Actions (TLA, [22]) is a linear-time tem-
poral logic in which semantics is expressed by infinite state sequences. The cor-
responding syntax is TLAT that enables describing system behavior by special
state transition systems and additional fairness properties. Fig. 2 is an exam-
ple of a TLA™T specification. After a frame containing the module name (i.e.,
HotelWakeUpSystem), it uses the expression EXTENDS Naturals describing the
import of a module including definitions, operators and axioms to model the
natural numbers. The states of the state transition system are modeled by vari-
ables (here i, t, h and a) which are, in general, non-typed. The predicate Init
specifies the set of values the variables shall have in the initial state. The tran-
sitions are described by actions each specifying a pair of a current state and its
successor state. Here, the current state is referred to by variable identifiers in a
simple form while the next state is modeled by primed variable identifiers. An
example is the action initial which may be executed if the variable ¢ has the
value 1 and h has the value “off”. After its execution, i will carry the value 0
which is described by i’ = 0. In addition, h will have the value “started” in the
following state while the two other variables a and ¢ do not change their values
during the execution of the action. The set of system transitions is modeled as
the disjunction of the system actions which is expressed by the definition Next,
the so-called next-state relation. The overall system description is modeled by
the canonical formula Spec. The first conjunct of this temporal formula defines
that the predicate Init holds in the first state of every state sequence modeled by
Spec. The second conjunct uses the temporal operator O (“always”) specifying
that the rest of the conjunct is valid in all states of all state sequences describ-
ing the behavior of the system. The TLA expression [Next](; +5,q) determines



MODULE Hotel WakeupSystem —
EXTENDS Naturals
VARIABLES i, t, h, a

Init 2
Ai=1At=0
Ah = "off' Aa="off

initial =
Ai=1A43 =0
A h = “off" A b’ = “started”
A UNCHANGED (a, t)

startAlert =
A h = “started” A b’ = “alerting”
Aa= "“off" Ad = “active”
A UNCHANGED (3, t)

At =0At =1
A UNCHANGED (i, a)

confirmed 2
A h = “stopped” A h' = “off’
At =0 At =1
A UNCHANGED (i, a)

timeout =
At =1At =0
A h = “off’ A h' = “started”
A UNCHANGED (i, a)

Next =
V initial V startAlert V stopAlert
V aborted V confirmed V timeout

Spec 2 Init A O[Next] (i, ¢, b, a)

stopAlert = f
A h = “alerting” A h' = “stopped” t0 2 O((i =1) = (h = “off"))
A a = “active” A a’ = “off’ t1 £ O((h = “stopped”) = (t = 0))
A UNCHANGED (4, t) t2 2 O((h = “started”) = (a = “off"))
A t3 = O((h = “alerting”) = (a = “active”))
aborted = t4 2 0((t=1) = (h = "off"))

A h = “stopped” A h' = “off"’ | J

Fig. 2. TLA Module

that a state transition has to be either a stuttering step in which all variables
listed in the subscript maintain their values or satisfies the condition Next. Thus,
every state sequence begins with a state fulfilling Init and corresponds only to
state transitions which either meet one of the system actions or are stuttering
steps. Further conjuncts may be used to describe liveness properties by fairness
assumptions on actions which, however, is not discussed in this paper.

The second paragraph of the specification contains a list of properties ¢0 to
t4 which shall be kept by the system. As they all start with the always operator,
they state invariant behavior (e.g., if variable ¢ has value 1, h must be “off").
To verify an invariant, one has to prove that it holds in the initial condition Init
and that it is preserved by every system action.

The compositional Temporal Logic of Actions (¢TLA [6]) mentioned in the
introduction is a derivative of TLA. It resolves a shortcoming of TLA which
is limited to compositions based on joined variables [23]. In contrast, cTLA
combines modules by defining joined system actions as simultaneously executed
module actions which is a prerequisite for constraint-oriented models [24]. There,
one specifies not single physical components but properties describing partial sys-
tem behavior which spans several components. As the UML 2.0 collaboration and
activity-based models used in our approach demand this particular specification
style, we used ¢TLA instead of TLA to define their semantics [7]. cTLA uses a
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process-like specification style which encompasses both simple and compositional
process descriptions. As the compositional process models can be transferred to
simple ones (see [6]) and the simple processes are basically defined by the same
canonical formulas as TLAT, it was not a major problem to transform the UML
activities to TLAT modules like the one depicted in Fig. 2. This is done by
the tool introduced in [10] such that we can use the model checker TLC [12] to
automatically prove that the activities fulfill certain properties since TLC uses
TLAT specifications as input. TLC performs an exhaustive exploration of all
reachable system states and verifies that invariant properties are maintained by
every checked state!. In the case of a failure, a path of states leading to the one
not fulfilling a property is shown which facilitates the search for the error and
can be visualized in the UML activities.

4 UML 2.0 Activities in the SPACE Approach

In order to study an intricate problem in isolation, we consider a system to carry
out wake-up alarms for guests of a hotel. The system is partly automated, as the
requests for wake-up alarms are noted manually by the receptionist in a book.
The guests prefer to be woken by an alarm instead of a direct phone call, to avoid
contact with the personnel at an early morning hour. To convince the receptionist
that they really are awake, they confirm the alarm by pressing a button. The
reception has a control panel with two buttons and a display for each of the
guest rooms, illustrated in Fig. 3. At wake-up time, the receptionist pushes the
alert button which sounds the alarm in the guest room. If the guest confirms,
the display shows Confirmed for some seconds so that the receptionist knows
that the guest is actually awake. If the guest does not confirm, the receptionist
can abort the alert after some time, upon which he or she may visit the room
and rouse the guest with more drastic measures.

! For liveness proofs not introduced here, TLC checks sequences of states.
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4.1 Informal Explanation of Activities

The behavior of the example system is described by the UML 2.0 activity shown
in Fig. 4. It is divided into two activity partitions, one denoting the hotel recep-
tion and one for a guest room?. On the reception side, the activity contains three
operations to control the display by printing the messages Ready, Aborted and
Confirmed. On the side of the guest room, an alarm device is represented by a
so-called call behavior action. This is a node that may refer to other activities (in
the following referred to as sub-activities) and be used for decomposition. In the
system here, we do not know about the internals of the alarm, just that it can be
started by a token entering via start and stopped by a token via stop. Similarly,
h refers to another activity realizing the protocol between the reception and the
hotel room?®. In contrast to the building block for the alarm, h spans over both
activity partitions and as such describes a collaboration between the reception
and the guest room.

The system activity starts on the side of the reception at the initial node.
A token is emitted upon system startup and moved to a fork node, where it
is duplicated. One of the tokens continues to operation display Ready, causing
the display to show that the system is ready. Afterwards, it ends at a flow
final node. The other token leaves the fork and moves into the call behavior
action h via input pin start. This activates the Hotel Wakeup sub-activity. On
this level, we just need to know about its externally visible behavior, described
by the state machine Hotel Wakeup in Fig. 5. The stereotype «esm:> applied
to it marks that the diagram denotes an external state machine (ESM, [25])
for the sub-activity. Its transitions refer to the input and output pins of the
corresponding sub-activity, describing in which sequence tokens may be passed.
We see that after start, event start alarm will eventually happen, followed by stop
alarm. Thereafter, the sub-activity terminates as either aborted or confirmed,
depending on the behavior of the guest. On the side of the guest room, the flow
leaving start alarm and stop alarm of h is connected to start resp. stop of the
call behavior action a modeling the alarm. On the reception side, the display
informs the receptionist about the outcome via two distinct display messages
once sub-activity i terminates. As soon as the display messages Confirmed or
Aborted appear, a timer is started waiting for a certain time, so that the message

2 To keep the discussion simple, we only consider one room. Using the mechanisms
presented in [1], this design can easily be expanded to multiple rooms.

3 The decision to put the alarm and the display outside of the Hotel Wakeup h was
here mainly to ease the presentation of the contents of i as shown in Sect. 5.
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can be read. Upon a timeout, the display is reset to Ready and the hotel wake-up
can be used again.

A first (naive) solution for the internals of the call behavior action h: Hotel
Wakeup is shown in Fig. 6. Note that the dashed lines are not a concept of UML
activities but are here used to illustrate the preliminary state of the model which
we will replace later, based on the findings of the model checking. The flows in
solid lines remain stable throughout all solutions. The activity is composed from
three buttons alert, confirm and abort from our library of reusable building
blocks [26]. Their external behavior is described by «esms Button in Fig. 5.
There, a button is activated via start. In this state, it may be pushed by the
user, which causes its termination via pushed. It may also be stopped by a token
through stop, whereupon any pushes by the user are ignored.

When the Hotel Wakeup collaboration is started, the alert button is acti-
vated immediately. Once it is pressed, a token is emitted via pushed, activating
the abort button. At the same time, the flow continues towards the partition for
the guest room. As the partitions will be implemented by different, physically
remote components, we assume a buffered communication between activity par-
titions. Therefore, a token waits for an arbitrary time in a virtual queue place
where a flow crosses partition borders. This corresponds to the transmission
through a physical medium. When the flow from the alert button is received
by the guest room partition, the confirm button is activated, and a token is
branched off towards the output node start alarm to notify the alarm device. If
the confirm button is pushed, the alarm is stopped via output node stop alarm
and a confirmation is routed back to the reception partition where the collabo-
ration terminates via output pin confirmed. If the receptionist presses the abort
button, the guest room is notified to switch off the alarm and the confirmation
button, and the collaboration is terminated via aborted.

4.2 Semantics of UML 2.0 Activities in Temporal Logic

Formally, UML activities are based on Petri Nets and describe as such a state
transition system. In [7] we defined the semantics of activities in terms of ¢cTLA,
which can be easily mapped to TLA™T, the input language for the model checker
TLC, as discussed in Sect. 3. The transformer from UML 2.0 activities to



TLA™ [10] uses UML activity models stored in the UML2 repository of Eclipse
as input. Roughly speaking, the tool maps each token movement of an activity
to an action in a TLAT formula in which stateful nodes such as timers, sub-
activities, joins and accept signal actions are represented by their own variables.
The buffering of flows that cross activity partitions is formalized by queue vari-
ables which are bags of tokens. Whenever a token leaves a source partition, it is
added to the corresponding queue place. In a second action, it is removed from
the queue place and continues the flow in the target partition.

As an example, the specification in Fig. 2 displays the TLA™T code generated
for the system activity depicted in Fig. 4. It consists of six actions*, each mod-
eling a token movement. The module declares a variable for each stateful node
of the activity, that is, the initial node by variable i, the timer by ¢ as well as
the sub-activities for the wake-up h and the alert a. For both the timer and the
initial node, we use simply an integer to store the number of tokens that are
resting in them. Initially, there is one token in the initial node (which means the
activity is ready to start) and no token in the timer (i.e., the timer is idle). This
is expressed with the initial predicate Init by i = 1 At = 0. The variables for the
sub-activities store the current states of the ESMs that represent their externally
visible behavior. Initially, both ESMs are in their initial state, so that value “off”
is assigned to h and a by Init. The six actions model the token movements within
the activity. Action initial specifies the start of the activity. The token resting
in the initial node is removed from it (¢ = 0) and enters h via input pin start.
The ESM of h (according to its definition in Fig. 5) makes a transition to state
started®. When h is in state “started”, action startAlert is enabled. It models the
emission of a token from h via startAlert activating the alarm (a’ ="active").
Eventually, the alarm will be deactivated again by the execution of stopAlert.
After that, the two actions aborted and confirmed are enabled, modeling the
termination of sub-activity h (by A" ="off"). Due to the merge node, both of
these actions start timer t (by ¢’ = 1), enabling action timeout, which restarts
sub-activity h.

4.3 Theorems for Well-Formed Activities

An important property of our activity specifications is that the events of the
sub-activites are invoked in the order specified by their ESMs. This means for
example that, whenever a token attempts to enter start of sub-activity h, then h
must not yet be activated, i.e., h ="“off". A token can be released from the initial
node whenever it has a token, i.e., i = 1. So, we want to be sure that whenever
there is a token in the initial node, the sub-activity is not yet active. Formally,
this is an implication ¢ = 1 = h = "off’. As this property must always hold,
our tool writes the theorem as an invariant t0 = O((i = 1) = (h = “off’)). The
further theorems describe the other cases in which the ESM of a sub-activity

4 We adjusted the automatically chosen variable and action names for readability.
5 The token is further forked into operation display Ready, which we can ignore here
since no stateful node is reached.
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must not be violated by its environment. For example, ¢4 ensures that whenever
the timer is active (¢ = 1), sub-activity h may be started again (h = “off").
The violation of ESMs is only one major source for errors. Thus, the current
transformation tool also writes theorems to check the boundedness of queues
as well as assertions on the execution of operations that can be added with
additional stereotypes [10]. This is, however, not discussed here.

5 Developing and Model Checking the Example

The use of model checking to correct activity-based service specifications is out-
lined by discussing the improvements of the hotel wakeup system. We start by
applying our transformation tool and create the TLA™T specification of the sys-
tem activity listed in Fig. 4. The outcome is the TLA module introduced in Fig. 2
which is checked by TLC. The model checker notifies that 5 distinct states were
generated and that no errors were found. Given the theorems that are included
in our automatically generated formal specification, this means that the con-
tracts of the used building blocks h and a are obeyed. Thus, we can proceed by
checking the design of the Hotel Wakeup activity.

5.1 Solution 1: A Naive Start

As an initial solution, we consider the activity introduced in Fig. 6. On a first
glance, it looks quite straightforward. When the alarm button is pushed, the
guest room is notified to activate the confirmation button. A push on their button
by either the receptionist or the guest stops the alarm and the respective other
button. However, when we model check this activity, TLC says that temporal
properties are violated and prints a trace of states that describes the behavior
up to the moment when the violation took place. This trace may be projected
onto the activity, as illustrated in Fig. 7. Hereby, the transfer queues are shown
as token places where the flows cross partitions, and the activity and its sub-
activities are amended with boxes showing the current state of their ESM.

State 1. The activity is not yet active and its ESM is in state off. The queues
a, b and c are empty, and all sub-activities are in state off as well.

State 2. A token was moved via the input node of the activity and activated
the alarm button, which is now in state active.

State 3. After the alarm button was pressed, a token was forwarded into
queue ¢ and the abort button is now active. In this state, TLC reports that a
theorem is violated. This theorem states that whenever the abort button is active
(and may therefore emit a token at any time), the ESM of Hotel Wakeup is in
state stopped, as an outgoing token from abort would pass through parameter
node aborted (see Fig. 5). So, in the current state, the active abort button could
terminate the entire activity through flow 21 and contradict the ESM. In practice
this means that the system using Hotel Wakeup could assume the alarm to
be aborted after the abort button was pressed, although the alarm was never
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Fig. 7. Error trace of solution 1

started. To check for further errors before a redesign, the tool allows us to ignore
this error for a moment and let the abort button be pushed.

State 4. By pushing the abort button, a token was emitted via aborted and
another one is placed in queue b. In this state, the guest room may decide to
consume the token from queue b, which would then be moved via z2 into the
confirm button that is in state off, which is is against the ESM of the button
(see Fig. 5). Obviously, the activity in Fig. 6 does not regard that due to the
transfer medium, an abort flow may overtake the alarm flow.

5.2 Solution 2: Improved Version with a Sequencer

The problem found in state 4 of solution 1, where the confirm button could be
stopped before it was even started, can be solved by adding a building block of
type Sequencer from our library [26] to the new activity in Fig. 8. It controls two
flows arriving in any order at i1 and 32 such that their respective outputs may
only happen in the order o1 followed by 02. The problem found in state 3 of the
previous solution, according to which the ESM of Hotel Wakeup was violated,
can be solved by an additional flow f that returns from the hotel room after the
alarm was started. A new run of TLC on the activity in Fig. 8 reveals, however,
that there are still flaws in the system. Figure 9 shows the new error trace. The
two first states are omitted as they correspond to the ones of Fig. 7.

State 3. The alert button has been pressed and a token is waiting to cross
from partition reception to partition room in queue a. The abort button has also
received a token and is in state active.

State 4. The token waiting in queue a has passed through the sequencer and
activated the confirm button. The token was also forked so that a copy left the
activity via start alarm causing the ESM of Hotel Wakeup (Fig. 5) to change
from started to alerting. Both buttons are now waiting to be pushed.

State 5. The confirm button has been pushed sending a token via stop alarm
changing the state of the ESM to stopped. The token was also forked into the
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queue ¢ where it is waiting to enter the reception partition. The confirm button
has returned to state off.

State 6. The receptionist pushed the abort button, which switched to off
and emitted a token into queue b, so that there is now one token in each of the
queues b and c. This harms, however, two theorems that protect the contracts
of the buttons. The confirm and stop button are both in state off, but tokens
are placed in the queues that flow into the stop pin of the buttons via flows z3
and z4, which would violate their ESMs.

5.3 Solution 3: A Building Block for Mixed Initiatives

State 6 of the trace in Fig. 9 reveals an intrinsic peculiarity of the system: Due
to the communication delay between the reception and the hotel room, both,
an abort and a confirmation, can be in progress simultaneously. This is since
during the alerting phase, both the receptionist and the hotel guest may take
their initiative at nearly the same time. Although not always recognized, this
situation occurs frequently in reactive systems, and has several names such as
conflicting [27] or mized initiative [28] as well as non-local choice [29]. As the
problem is quite general, our library of building blocks contains a collaboration
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to handle mixed initiatives. This collaboration has two participants, a primary
and a secondary one. These names reflect which of the sides gets priority over
the other if both sides take initiative contemporaneously. Two variants of the
building block exist, one where the primary participant starts the collaboration,
and one where the secondary one starts. In our system, we use the latter one and
assign the primary role to the guest room, so that a confirmation from a hotel
guest has priority over the abort from the reception. Fig. 10 shows the building
block already embedded into the new solution while the ESM showing the de-
tailed interleaving of its events is given in Fig. 11. For the sake of brevity, we look
here just at the externals of the block, as an engineer would do when reusing it.
The internals are similar to the building block Tour Request introduced in [1].

After the start of the collaboration via start on the secondary side, started
notifies the primary side that the state is reached in which it may trigger an
initiative. We couple this action with the start of the alarm. Input pin prim.
initiative, denoting an initiative taken by the primary participant, is coupled
with the pushing of the confirmation button. As the primary side has priority,
we know that the confirmation will succeed, and can therefore stop the alarm
right away. If the secondary side takes initiative (input pin sec. initiative), the
primary side gets notified via sec. action, which is used to stop both the alarm
as well as the confirmation button.

On the secondary side we have to take into account that an initiative from
the abort button can be overruled by the confirmation of the guest room. Besides
the nodes to start the collaboration and to take initiative, the secondary side
has therefore three terminating output pins, from which only one will eventually
release a token.

— Pin primary action releases a token if the primary side took initiative, and
the secondary remained passive, i.e., only the guest confirmed. This leads to
stop the abort button and to terminate via confirmed.

— Pin sec. overruled models that both initiatives have been taken, from which
only the primary prevails. It is sensible to distinguish this case from the
first one, as the reception in this case does not have to switch off the abort
button, which already terminated because of its initiative.



14

«esm» Mixed Initiative Secondary Starter}
sec.

initiative
° start
started started
sec. sec. sec.
initiative action accepted ®
prim. prim.
initiative initiative
sec. sec

rim. action initiative overruled.
@-F ®

Fig.11. ESM for Mixed Initiative Secondary Starter

— Pin sec. accepted emits a token if the secondary initiative was the only one,
and the primary side did not start an initiative on its own, i.e., the alarm
was aborted without the confirmation button being pressed.

When we translate this activity into TLA' and start TLC, we get the mes-
sage that all properties are fulfilled now. Thus, the activity handles all the in-
corporated building blocks as prescribed by their respective ESMs. Moreover, it
respects its own ESM and can be correctly used within the system described in
Fig. 4. After checking the activity realizing the call behavior action a modeling
alarms we know that the overall service specification is well-formed and can use
it as input for the transformation steps producing executable code.

6 Concluding Remarks

We presented our service development approach SPACE that uses collaborations
as building blocks. Their behavior is described by UML 2.0 activities which we
can transform automatically into temporal formulas and a number of theorems
expressing relevant properties to be fulfilled by an activity. The correctness of
these theorems is model checked by TLC and its error messages lead to step-
wise improvements of the models. The approach works both bottom/up and
top/down. Sub-services may be arranged and their composition to larger ser-
vices may be checked. Vice-versa, as done for the hotel wakeup, we may first
assume a certain external behavior and then realize the internals of the service.
Of course, many real systems are more extensive than the example used for the
discussion here. The larger scale of these system results, however, mostly in a
higher number of collaborations to be executed than in more complicated in-
teractions. Thus, we will have a higher number of decomposition levels (see, for
instance [5]), while the complexity of the models describing individual collabo-
rations will remain of manageable size.

Once a collaboration between components in form of activities is model
checked, it can be used in other systems without further proof efforts. This
is feasible as the building blocks may be abstracted by their ESMs describing
their external behavior. Thus, if we check an activity containing a sub-activity,
we only have to consider the ESM of the sub-activity which hides the internal
states, such that the state space of the model checked activity is reduced. In
consequence, model checking is never done on the entire system with all its de-
tails, but it is enough to successively check activities on their decomposition level
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separately. In this way, services and their compositions from sub-services may
be verified in a compositional way which effectively rules out state explosions.

With the automatic formulation of the temporal formulas and theorems we
created the base for user-friendly model checking of the service specifications
based on UML activities. In future versions, we may offer more advanced feed-
back to the user that may explain error situations further and suggest typical
improvements. This work will be performed as part of the research and develop-
ment project Infrastructure for Integrated Services ISIS, funded by the Research
Council of Norway, where we develop methods, tools and building blocks for
services in the domain of home automation.
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