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Abstract. A fundamental problem in the area of service engineering is
the so-called cross-cutting nature of services, i.e., that service behavior
results from a collaboration of partial component behaviors. We present
an approach for model-based service engineering, in which system compo-
nent models are derived automatically from collaboration models. These
are specifications of sub-services incorporating both the local behavior
of the components and the necessary inter-component communication.
The collaborations are expressed in a compact and self-contained way
by UML collaborations and activities. The UML activities can express
service compositions precisely, so that components may be derived au-
tomatically by means of a model transformation. In this paper, we focus
on the important issue of how to coordinate and compose collaborations
that are executed with several sessions at the same time. We introduce
an extension to activities for session selection. Moreover, we explain how
this composition is mapped onto the components and how it can be
translated into executable code.

1 Introduction

In its early days, reactive software was mainly structured into activities that
could be scheduled in order to satisfy real-time requirements. As a result, the
rather complex and stateful behavior associated with each individual service
session and resource usage was fragmented and the overall behavior was often
difficult to grasp, resulting in quality errors and costly maintenance.

The situation was considerably improved by the introduction of state ma-
chines modeling stateful behavior combined with object-based and later object-
oriented structuring. By representing individual resources and sessions as state
machines, their behavior could be explicitly and completely defined. This prin-
ciple helped to substantially improve quality and modularity, and therefore be-
came a widespread approach. It also facilitates the separation between abstract
behavior specifications and implementation, and enabled model-driven develop-
ment in which executable code is generated automatically from state machines.
SDL [1] was developed as a language to support this approach and, considering
its adoption and support, we must say that it has been successful at it.

? Accepted at the 13th SDL Forum, Paris, 2007. The publishers PDF version is avail-
able on www.springerlink.com, LNCS online. Copyright Springer-Verlag.
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However, there is a fundamental problem. Service behavior is normally dis-
tributed among several collaborating objects, while objects take part in several
different services. By structuring according to objects, the behavior of each in-
dividual object can be defined precisely and completely, while the behavior of a
service is distributed across the objects. This is often referred to as the “cross-
cutting” nature of services [2–4], and is one of the underlying reasons why com-
positional service engineering is such a challenge. Fundamentally, the behavior
of services is composed from partial object behaviors, while object behaviors are
composed from partial service behaviors.

A promising step forward to solve this problem is to adopt a collaboration-
oriented approach, where the main structuring units are formal specifications
of services containing both the partial object behavior and the interactions be-
tween the objects needed to fulfill the service. These specifications are called
collaborations. Albeit many of the underlying ideas have been around for a long
time [6, 7], the new concept of UML 2.0 collaborations [5] provides a modeling
framework that opens many interesting opportunities not fully utilized yet. First
of all, collaborations model the concept of a service very nicely. They define a
structure of partial object behaviors, the collaboration roles, and enable a precise
definition of the service behavior. They also provide a way to compose services
by means of collaboration uses and role bindings.

Figure 1 shows a coarse system architecture illustrating the relations be-
tween collaborations and objects (referred to as components in the following).
A service is delivered by the joint behavior of the components x1 to x3, which
may be physically distributed. The service described by collaboration c1 can be
composed from the two sub-services modeled by collaborations c2 and c3. The
necessary partial object behavior used to realize the collaborations is represented
by so-called collaboration roles r1 to r4. Note how the collaborations cut across
the components and define inter-component behavior. Orthogonal to this, com-
ponent behavior is defined by composition of collaboration roles. Communication
between components is assumed to be based on asynchronous message passing
only (cf. [8]), while communication within one component may also use shared
variables and synchronously executed actions (i.e., an event in one collaboration
can cause actions in another collaboration).

We have found that collaboration-oriented decomposition tends to result in
sub-collaborations corresponding to interfaces and service features [9] with be-
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havior of limited complexity that may be defined completely and be reused in
many different services. This simplifies the task of defining inter-component be-
havior and separates it from the intra-component composition. It has been shown
in [10, 11] that collaborations also provide a basis for analysis and removal of
errors at a higher level of abstraction than detailed interactions.

A well established approach is
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A promising next step forward is to adopt a collaboration-oriented approach,
where the main structuring units are collaborations and their partial object
behaviors, called roles. This is made practically possible by the new UML2 col-
laboration concept, albeit many of the underlying ideas have been around for
a long time [OORAM and others]. As we shall, see in the following this opens
many interesting opportunities.

Figure 1 illustrates with a coarse system architecture the relations between
a service, collaborations and components. A service is delivered by the system
through the components x1 to x3, which may be physically distributed. The
collaboration role behavior necessary is expressed by the logic denoted by the
circles r1 to r4.

However, instead of expressing the behavior of the system in terms of its com-
ponents, we decompose the service into sub-services described by sub-collaborations
c2 and c3.

Communication between components (“inter-component”) is asynchronous
by means of buffered signals (cf. [1]), while the communication within one compo-
nent may in addition include shared variables as well as synchronously executed
actions, where statements belonging to one collaboration are executed within the
same state machine transition as statements belonging to another collaboration.
(The event in one collaboration can cause actions in another collaboration.)

Explain that we transform to get code, and show the approach. implemented
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to model “horizontal” collaborative
behavior using MSCs or UML se-
quence diagrams. They provide the
desired overview, but will normally
not be used to define the com-
plete behavior. In this paper, we
present our approach (see also [13,
14]) in which the complete behav-
ior of collaborations is defined us-
ing UML activity diagrams. We of-
fer an extension to UML that en-
ables to compose also behavior that
is executed simultaneously in sev-
eral sessions. This enables a com-
plete and precise definition of the
inter-component behavior of each
collaboration as well as the intra-
component behavior composition of collaborations, without the need to specify
interaction details. The approach enables an automatic synthesis of component
behaviors in the form of state machines from which executable code is auto-
matically generated, as illustrated in Figure 2. By defining the semantics of
activities and state machines using the temporal logic cTLA [12], we are able to
verify by formal implication proofs that the transformations of the collaboration-
oriented models to the state machines are correct (see [13]). This formal aspect,
however, is not the focus of this paper. In the following we first introduce the
collaboration-oriented specification approach by means of an example, and show
how multiple session instances can be coordinated. Afterwards, we describe the
transformation from collaboration to component behavior.

2 Collaborations

In Fig. 3 we introduce a taxi control system. Several taxis are connected to a
control center, and update their status (busy or free) and their current posi-
tion. Operators accept tour orders from customers via telephone. These orders
are processed by the control center which sends out tour requests to the taxis.
Taxis may also accept customers directly from the street, which is reported to
the control center by a status update to busy. Fig. 4 defines this as a UML 2.0
collaboration. Participants in the service are represented by collaboration roles
taxi, c, and op. For the taxis and the control center we will later generate com-
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ponents. The operators are part of the environment and therefore labeled as
�external�. The control center c has a default multiplicity of one, while there
can be many taxis and operators in the system, denoted by multiplicity [1..*].
Between the roles, collaboration uses denote the occurrence of behavior: taxis
and control center are interacting with collaborations Status Update, Position
and Tour Request, while the operators are cooperating with the control center by
means of collaboration Tour Order. In this way, the entire service, represented
as collaboration Taxi System, is composed from sub-services.

2.1 Describing Behavior of Collaborations

Besides being a so-called UML structured classifier with parts and connectors
as shown in Fig. 4, a collaboration is also a behaviored classifier and may as
such have behavior attached, for example state machines, sequence diagrams
or activities. As mentioned in the introduction, we use activity diagrams. They
present complete behavior in a quite compact form and may define connections
to other behaviors via input and output pins. In [14, 15] we showed how service
models can be easily composed of reusable building blocks expressed as activities.

The activity Status Update (Fig. 5) describes the behavior of the correspond-
ing collaboration. It has one partition for each collaboration role: observer and
observed. As depicted in Fig. 4, these roles are bound to c and taxi, so that
the observer is the control center that observes a taxi. A pleasant feature of our
approach is that we can first study and specify the behavior of the control center
towards one taxi and we later compose this behavior, so that the control center
may handle several taxis.

Activities base their semantics on token flow [5, p.319]. Hence, a token is
placed into the initial node of the observer in Fig. 5 when the system starts. The
token moves through the merge node, upon which the observed party sends its
current status to the observer. The observer then updates its local variable s2.
From then on, the taxi pushes any status change to the control center. As these
changes depend on events external to this collaboration, they are expressed by
the parameter nodes set free and set busy. These are streaming nodes through
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which tokens may pass while the activity is ongoing. Later, the parameter nodes
(represented by corresponding pins on call behavior actions) will be used to
couple the status update collaboration with the other collaborations. In addition,
we defined an operation available for the activity that we will later use to access
the status of a taxi from the control center. As this operation accesses variable s2
localized in the observer, we use the constraint {observer} to mark that it may
only be accessed from the side of the observer. The collaboration Position (not
shown) works similarly by notifying the observer about the current geographical
position.

The collaboration Tour Request depicted in Fig. 6 models the process of
notifying a taxi about a tour. It is started via parameter node request tour,
which starts timer t and places a token in waiting decision node w. A waiting
decision node is the extension of a decision node with the difference that it may
hold a token similar to an initial node, as defined in [13]. w is used in combination
with join nodes j1 and j2 to explicitly model the race between the acceptance
of the tour by the driver and the timeout mechanism. Another flow is forwarded
to the taxi which first checks its status. This is necessary as the taxi can in
fact be busy even if it was available when the requestor started. This is due
to the inevitable delay of signals between the distributed components, so that
the taxi may have accepted a customer from the street while a request is on its
way. In general, the flows between the control center and the taxi (as well as
all other flows crossing partitions) are buffered. We describe this in a so-called
execution profile (see [5, p. 321]) for our service specifications [16] and model it
by implicit queue places, as described in [13]. If the taxi is still free, the control
flow is handed over to some external control not part of this collaboration. If
the taxi driver accepts the tour, the control flow returns, and a token is offered
to join node j1. If w still has its token, j1 can fire, emit a token on accepted on
the requestor side, and then terminate the collaboration on the taxi side with
an activity final node and output node accepted1. In case the taxi turned busy

1 As this ending is alternative to the cancelation of a tour request, it must be expressed
by its own UML parameter set, denoted by the additional box around the node.
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or a timeout occurs, a token is offered to j2. It fires if w still has its token, so
that the collaboration first notifies the requestor upon the cancelation and then
terminates the collaboration on the taxi side.

Note that the events accept tour and the timeout may both happen, as they
are initiated by different parties. This is a so-called mixed initiative [18] that
must be resolved to prevent erroneous behavior in which one side accepts the
request while the other one considers the request as canceled. The taxi therefore
sends the acceptance of a tour first to the requestor and waits for a confirmation;
if the timer expired in the meantime, the acceptance is intercepted in j1 and the
collaboration terminates consistently with canceled on both sides.

2.2 Composing Collaborations with Activities

To generate state machines, components and finally the executable code for the
system components, the structural information about how the collaborations are
composed (as shown in Fig. 4) is not sufficient. In fact, we need to specify in
detail how the different events of collaborations are coupled so that the desired
overall behavior is obtained. For this purpose we use UML activities as well, as
they allow us to specify the coordination of executions of subordinate behaviors [5,
p. 318]. Using call behavior actions, an activity can refer to other activities. Like
this, the activity of a composite collaboration may refer to the activities of its
sub-collaborations and specify how they are coordinated.

Fig. 7 shows the activity for the composed taxi system. Again, each col-
laboration role is presented by its own activity partition. As the taxi system
collaboration is composed from several other collaborations, the activity refers
to them via the call behavior actions s, p, t and o. Let us first focus on the par-
tition for the taxi on the left hand side. It describes the local coupling between
the collaborations a taxi participates in, including some additional logic for the
user interface of the taxi, modeled as activities for three buttons and an alarm
device that have been fetched from our library of reusable building blocks [17].
When the taxi partition starts, button busy is activated. The driver presses it
once a customer from the street orders a tour whereupon the button emits a
token at exit push. This updates the status of the taxi to busy by coupling push
of the busy button with set busy of the status collaboration2. In addition, button
ready is activated to signal the termination of the tour by the driver. As the taxi
participates in the collaboration Tour Request (represented by the call behav-
ior action t), it must also handle the event when a tour request arrives from
the control center, which is accessible through the output pin tour request of t.
This event triggers the deactivation of the busy button, and activates the accept
button as well as an alarm to notify the driver. The accept button, which is
pushed if the driver accepts, notifies the collaboration t. Depending on the final
outcome of the tour request collaboration (it may still be aborted by a timeout),
either the ready button is activated and the status is changed to busy, or the

2 For presentation reasons, this flow is segmented graphically by connector b.
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means that we can interpret the figure on the left like shown on the right, where
each mobile phone may be involved in several executions of the proximity service
(this is just an illustration).

OCL to specify if a phone may track itself.
Activity can cover this quite well.
Draw the activity for system.
Collaboration uses do not have a multiplicity attribute in UML. However,
So far, we have only considered that a collaboration is executed once at

a time. For instance, one execution of an SMS inquiry required exactly one
execution of the SMS listener collaboration.

UML activities may be executed (find term). These have not streaming pa-
rameters (to keep it simple). However, with the notion of collaborations it is
easy to identify the correct instance of behavior by its participants.

Using the SMS inquiry, we can now describe the position notification service.
It uses the SMS inquiry to ask a user if tracking should be allowed for a certain
observer. If the permission is granted, the observer registers for position updates
at the position gateway. Once the position gateway sends an position update
to the observer, the position is analyzed. If it lies within the specified area, the
observing user is notified with an SMS. The three call operation actions are used
to generate the corresponding notification text messages.

5 Formal Semantics

!
Give an impression on how we model that with cTLA, but without going into

formulas? A collaboration is a cTLA process. Abstraction processes, connected
formally by implication.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed
vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget
odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo
eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare
ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc
dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam.
Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula
eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames
ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo.
Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum
fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac,
lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In
hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet,
placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada
ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.
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Fig. 7. The Taxi System Activity

taxi remains available and the busy button is activated again. The position col-
laboration needs no coupling, as it constantly sends the position independently
of the other behaviors.

3 Multiple Behavior Instances and Sessions

From the viewpoint of one taxi, there is exactly one collaboration session for
each of the three collaboration uses s, p, t towards the control center. This can
be handled easily with the UML activities in their standard form. The control
center, on the other hand, has to maintain these sessions with each of the taxi
cars. From its viewpoint, several instances of each of the collaboration uses s,
p and t are executed at the same time; one instance for each taxi. Moreover,
the tour order collaboration not only has to be executed concurrently towards
several operators, but each operator may also request new tours while others are
being processed. From the viewpoint of the control center, the collaborations it
participates in, are what we call multi-session collaborations. We express this by
applying a stereotype �multi-session� to the call behavior actions and represent
it graphically by a shadow-like border in those partitions where sessions are
multiple3. Consequently, the call behavior actions (resp. sub-collaborations) s,
t, and p in Fig. 7 have a shadow within the control center partition, while o is
multiple both in the control center and the operators4.

This raises the question about how the different instances of collaborations
may be distinguished and coordinated, so that the desired overall system behav-
ior is obtained. A selection of sessions must take place whenever a token enters
a multi-session sub-collaboration (as for example via the pin at Ê). While in

3 Technically, the corresponding partitions are stored as a property of the stereotype.
4 In this paper we focus on the partitions taxi and control center and do not further

look into the operator partition.
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some cases we may want to address all of the sessions, in other ones we like
to select only a subset or one particular session. The UML standard, however,
does not elaborate this matter but instead forbids streaming nodes on reentrant
behaviors completely, as it is ambiguous which execution should receive stream-
ing tokens [5, p. 398]. This is too restrictive, as most systems exhibit patterns
with several executions going on at a time, that possibly need coordination. We
therefore added the new operators select and exists to our execution profile.

3.1 Identification of Session Instances

First of all, the different sessions must be distinguished at runtime. This resem-
bles the well-known session pattern (see for example [19, p. 191]) that is found
in client/server communication, where the server has some kind of identifier to
distinguish different sessions. Accordingly, each collaboration session has an ID.
For collaborations having one session instance for a specific participant, the ses-
sion ID can be chosen to be identical to that of the participant. For example, we
can use the ID of the taxi to identify the session instances of the Tour Request,
Status Update and Position collaboration. This is similar to SDL, in which a
process identifier pid of a communication partner is often used to refer to a
session. If there can be more than one session per communication partner (the
control center can for instance have several ongoing tour orders from the same
operator) any other unique identifier can be used; for collaboration Tour Order
we can use a unique order number.

3.2 Choosing Session Instances with select

When an operator accepts an order from a customer, a token leaves the output
pin tour order of o in Fig. 7. Let us ignore for the moment the decision and
assume it takes the upper branch, towards input pin request tour of t at Ê. At
this point we have to specify into which session instance of t the token should
enter. We do this by attaching an expression as guard to the edge entering the
input pin. If we would like to select all instances (by duplicating the token), we
could write select all, resulting in an alarm in each taxi, whether busy or free,
which is not desired. Instead, we would like to select only one of the free taxis.
This means, we want to access properties of the s: Status Update sessions. As
collaboration uses s and t have the same set of IDs, we would like to obtain an
ID of s for which the status is free. To enable the control center to check the
status of its taxis, we defined in the activity Status Update (Fig. 5) a boolean
operation available which is executable from the observer side. This operation is
used in the select statement. As there may be more than one free taxi, we further
specify by adding the keyword one that only one of them should eventually be
selected. The entire statement is then

select one : s.available.

If none of the taxis is free, no session is selected and the token flow simply stops.
We describe later how this situation is ruled out by an alternative behavior using
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select := ‘select’ mod ‘:’ [{filter}] [ ‘/’ {filter} ].

exists := ‘exists’ name ‘:’ filter [ ‘/’ {filter} ].

mod := ‘one’ | ‘all’.

filter := name | ‘self’ | ‘active’

| ‘id=’ variable.

Fig. 8. EBNF for select and exists
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Fig. 9. Messaging service extension

the decision node. If a tour request is canceled, another taxi can be contacted
(via connector c) by iterating a new tour request.

Once the selected taxi accepts the tour, a token leaves output pin accepted
and enters o: Tour Order. Here we have to select again which of the instances
should be chosen. As they are distinguished by the order number, we leave this
number as attribute order inside the token5, and extract it by writing

select one : id=order.

The complete EBNF definition for session selection and existence is given in
Fig. 8. It allows specifying several filters (e.g., available) that are applied in the
order of their listing. In this way, we may flexibly use a sequence of filters, for
example to call the taxi that is closest to the street address. In this case we would
introduce a filter nearest which considers the location of the taxis provided by
collaboration p and computes the taxi which is closest to the customers position.
As we still want to select only free taxis, we can apply the available filter before,
and write select one : s.available nearest, so that an ID has to pass both filters.

To study another form of session selection, we extend the system with a
messaging service, where taxi drivers may send messages to each other; either to
a specific taxi or to all taxis. Parts of this addition are shown in Fig. 9. Messages
are sent via the control center, which maintains one instance of a collaboration
Messaging with each taxi. As we attach the select statement to the incoming
edges and not the nodes directly, a node may be entered with different selection
strategies, combined by a merge node. Personal messages arrive from a taxi at
pin personal and are forwarded by the ID stored as receiver, with the known
selection statement. Broadcast messages are sent to all other sessions, except
the session sending the message, expressed by select all : /self. The slash allows
to specify negative filters for exclusion. (If for any reason drivers should send
broadcasts just to free taxis, we would write select all : s.available /self.)

3.3 Reflecting on Sessions with exists

In some cases we have to reason about the status of certain sessions. For example,
before we process a request from the tour order collaboration, we check if there
5 This implies an UML object flow instead of a simple control flow, which we do not

show here to keep the diagrams easier to comprehend.
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are any free taxis available at all. We do this with the operator exists that returns
a boolean value that can be the guard in a decision. In Fig. 7, we include therefore
exists s : s.available, where s.available denotes the filter introduced above. Thus,
in the example, the selection at Ê is only reached if at least one taxi is free. If we
want to make a decision depending on the fact whether there are any currently
ongoing collaboration sessions (which have an active token flow) we may use the
standard filter active.

3.4 Modeling of Filters

A filter is modeled as an UML operation. Boolean filters only considering one
session can be defined as part of the activity describing the collaboration (like
available in Fig. 5). Filters that need to consider an entire set of sessions or
combine data from different collaborations are defined as part of the surrounding
activity, such as the filter nearest. In contrast to the boolean filter available,
nearest receives and returns an entire set of IDs, from which it can determine
the one with the minimal distance to the address given by the token. The address
is contained in the token, which is handed over to the filter by the parameter
token. In principle, the body of operations may be expressed as any kind of UML
behavior; in our current tool we use Java, embedded in a language-specific UML
OpaqueBehavior [5, p. 446], since our code generators create Java code.

4 Mapping to the Component Model and Implementation

In the following, we will discuss how the collaboration models are transformed
into the executable component model of our approach. After introducing the
component model, we explain the translation of single-session behavior and
thereafter the mapping of multi-session behavior to state machines.

4.1 Component Model

Our component model is based on UML 2.0 state machines and composite struc-
tures. In [20] we presented an UML profile with constraints ensuring that state
machines can be implemented efficiently on different platforms. The internals of
such executable state machines are similar to SDL processes. They communicate
by sending signals, and transitions are triggered by either the reception of a
signal or the expiration of a timer. Transitions do not block, so that they can be
executed in one run-to-completion step without waiting.

We extend this model with components that may contain a number of state
machines. Such system components are described by UML classes, and contain
one dedicated state machine describing the so-called classifier behavior. This
state machine typically manages the lifecycle of the component as well as state-
less requests arriving from other components, as we shall see later. In addition,
a system component can contain further state machines. These are modeled as
UML parts owned by the structured classifier and have a type referring to a
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state machine. In contrast to the static state machine expressed by the classifier
behavior, these parts may have a multiplicity greater than one, so that a system
component can hold any number of session instances of different state machine
types. A component structure generated by our transformation algorithm is il-
lustrated in Fig. 10 with two taxis and three operators. The taxis have only
their default classifier state machines, while the control center component needs
additional session state machines, as we will explain in Sect. 4.3.

A system component keeps track of its state machine instances in a data
structure for reflection. Each state machine instance has an ID, so that each of
them may be addressed within the component by its part name and ID. State
machines may access data of other state machines within the same system com-
ponent. This is used when behavior in one state machine depends on variables
in another ongoing collaboration that is executed by another state machine.

4.2 Mapping of Single-Session Collaborations

In [13] we described an algorithm that transforms activities into executable state
machines. One activity partition is translated into at least one state machine.
The algorithm scales well since only one partition needs to be considered at a
time, not the entire activity. The core idea of this transformation is to map a
flow crossing partition borders to a signal transmission between two state ma-
chines. Token movements within one partition are translated into state machine
transitions. A token starts hereby always at the reception of a signal (where a
flow enters a partition) or at a timer node, so that the resulting transitions are
triggered by signal receptions or timeouts. A token flow continues traversing the
activity graph until the next stable marking is reached, either in form of a join
node that cannot yet fire, a waiting decision, a timer node or by leaving the
current partition. This stable marking is encoded as control state of the state
machine. In this way, the algorithm constructs the entire state machine by a state
space exploration of the activity partition corresponding to the state machine.

These basic transformation rules enable a direct mapping of activity flows
to state machine transitions as explained and verified in [13]. Moreover, several
single-session collaborations composed within the same partition may be inte-
grated within the same state machine by combining their state spaces. Therefore,
when we synthesize the component for a taxi, both the behavior for the status
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update and the tour request collaborations may be implemented by the default
state machine, as shown in Fig. 10.

4.3 Mapping of Stateless Multi-Session Collaborations

When we analyze the collaboration for the status updates, we find that taxis can
send updates at any time, and that the central control has to be prepared at any
time to receive them. The behavior on the side of the central control (partition
observer in Fig. 5) is stateless, i.e., an update does not cause a change of behavior,
but only modifies data. Our algorithm detects this by looking for partitions
to be executed by the central control that do not contain any activity nodes
that imply waiting (joins, timers or waiting nodes). The algorithm transforms
status updates into one state machine transition that has identical source and
target control states. This means for the central control that it does not have
to distinguish separate control states for each taxi. Instead, the logic to handle
status updates of all taxis may be integrated into one single state machine.
The same holds for the behavior of the position collaboration, so that both
the status update and the position collaborations may be synthesized into the
default classifier behavior of the control center. Fig. 11 depicts the classifier
state machine of the control center. The just mentioned behavior for status and
position updates are carried out by the two transitions on the left side which
are triggered by the external signals status and position arriving from taxis. The
data about position and status has to be stored for each taxi individually, which
is done via the the arrays s2 and pos with the taxi IDs as keys.

4.4 Mapping of Stateful Multi-Session Collaborations

For stateful behavior towards multiple partners, the state must be kept for each
individual session. There are two principal solutions. One solution is to integrate
several sessions into one state machine and to distinguish the conversational
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states by data structures. This, however, leads to state machines with many
decisions. The other solution is to use a dedicated state machine instance for
each session, such that the state of each session is represented by an individual
control state. If state machines are edited manually (for example in TIMe [21]),
the second solution is preferred, as the state of conversation towards commu-
nication partners can be expressed explicitly by the control state of the state
machine, which makes them easier to understand [22]. This may be of minor
significance in an approach generating state machines automatically, but it is
nonetheless beneficial if results of the transformation shall be read by humans
or be validated with existing techniques [18]. We therefore decided to use one
state machine for each session. The fact that this solution may lead to many state
machine instances is not problematic, as even large numbers of state machines
may be implemented efficiently within the same native operating system process
by means of a scheduler (see, e.g., [20, 22]). A context switch between such state
machines just requires to retrieve the current state from a data structure. In
a solution integrating all sessions into one state machine, a similar operation
would be needed, as we also have to retrieve data belonging to the current state
of conversation with a communication partner.

4.5 Mapping and Implementation of select

The instances of stateful multi-session collaborations are represented locally by
session state machines, as we discussed above. Directing control flow to a single
or a set of collaboration instances means therefore to transfer control flow to the
individual session state machines within a component. This is done by notifying
the corresponding state machines via internal signals. In order to reduce the
possible interleaving of internal and external signals, we apply the design rule
given in [22] recommending that internal signals are assigned a higher priority
than signals coming from other components. In general, this leads to components
that complete internal jobs before accepting external input. In our case, it solves
the problem as any select signal sent to a session state machine will be handled
before an external signal can change its state.

Which state machine(s) should receive the signal(s) is determined by the
selection statements from the activities. The transformation therefore copies
each selection statement from the edge of the activity and attaches it to the
corresponding send signal action. The UML signal is created from the flow. It
includes parameters for the data contained in the activity token it represents.
The session selection at point Ê in Fig. 7 is, for example, done by the send
signal action request tour in the center of Fig. 11, with the attached selection
statement to determine the receiver address.

It is the task of the code generator to create Java statements from the selec-
tion expression that compute the actual addresses of the targeted state machine
instances. As discussed above, select uses a set of positive and negative filters,
with an additional flag indicating whether only one matching state machine in-
stance should be returned or all of them. The generated Java method simply
sends the set of state machine IDs through all of the filters specified in select
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by using the Java code already expressed in the activity models. The standard
filters self and active are added accordingly. If a collaboration is started (such
as at point Ê) the code for the selection includes mechanisms to create new
state machine sessions or retrieves instances from a pool, which is not further
discussed here.

4.6 Mapping and Implementation of exists

In contrast to the select statement, exists does not cause a handover of control
flow. It is used to get information about properties of the state machines of the
system component. As such, it is used in guards of decisions. Decision nodes in
activities are mapped directly to choice pseudostates in state machines that have
an outgoing transition for each edge leaving the decision node (see [13]). The
model transformation simply has to copy the exist guards of the activity edges
to the corresponding UML state transitions. The implementation of exists for
execution in Java is similar to that of select, with the difference that a boolean
value is returned if one session ID passed all filters.

5 Concluding Remarks

Much research effort has been spent on the problem of deriving component
behaviors from service specifications [23, 24]. In many approaches, the service
behavior is specified in terms of sequence diagrams or similar notations, which
are translated into component behaviors defined as state machines (see [25] for a
survey). It is also possible to derive message sequence scenarios from higher-level
specifications in the form of activity diagrams or Use Case Maps [26], and then
derive component behaviors in a second step. A direct derivation from Use Case
Maps was demonstrated in [27]. In this paper, however, we consider the direct
and fully automated derivation of component behavior from the specification
of collaboration behavior expressed as activities. While we presented the trans-
formation from single-session collaborations to state machines in [13], we have
extended the notation of activities and our transformation algorithm to handle
also collaborations executed in several sessions at the same time, as presented
in this paper. The advantage of our notation with select and exists is that they
can express the relations between sessions explicitly on an abstract level and
are still straight-forward to map to state machines that can be implemented
by our code generators [28]. The transformation algorithm is implemented as
an Eclipse plug-in and works directly on the UML 2.0 repository of the Eclipse
UML2 project.

We consider the specification of services in a collaboration-oriented way as a
major step towards a highly automatic model-based software design approach.
As depicted in Fig. 1, we hide the inter-component communication in the col-
laborations and activities while the intra-component communication is carried
out by linking activities with each other in partitions of surrounding activities.
This makes it possible to express sub-services in separation, which facilitates the
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general understanding of their behavior. Moreover, each collaboration models a
clear, separate task such that interaction-related problems like mixed initiatives
can be detected and solved more easily since only the problem-relevant behav-
ior is specified. The composition of collaborations profits from the input and
output nodes of activities which form the behavioral interfaces of the collabora-
tion roles. Different collaborations can be suitably composed by connecting their
nodes using arbitrary activity graphs.

Another advantage of collaboration-oriented specifications is the higher po-
tential for reuse. Usually, the sub-services modeled by collaborations can be used
in very different applications (such as for example the distributed status update
expressed by the collaboration Status Update). These sub-services can be mod-
eled once by a collaborations which can be stored in a library. Whenever such a
sub-service is needed, its activity is simply taken from the library, instantiated
and integrated into an enclosing collaboration. In our example, Status Update,
Button, Alarm and Position are good candidates for reuse.

An ongoing research activity is the development of suitable tools for editing,
refining, analyzing, proving and animating collaboration-based models. This will
be performed within the research and development project ISIS (Infrastructure
of Integrated Services) funded by the Research Council of Norway. The concept
of our approach will be proven by means of real-life services from the home au-
tomation domain. We consider collaboration-oriented service engineering as a
very promising alternative to traditional component-centered design and under-
stand the extensions for modeling and transforming sessions, presented in this
paper, as an important enabler.
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